Skip to main content

D2 receptor occupancy following lurasidone treatment in patients with schizophrenia or schizoaffective disorder

  • Steven G. Potkin (a1), David B. Keator (a1), Marilyn L. Kesler-West (a1), Dana D. Nguyen (a1), Theo. G. M. van Erp (a1), Jogeshwar Mukherjee (a1), Nikunj Shah (a1) and Adrian Preda (a1)...

Lurasidone is an atypical antipsychotic medication approved for the treatment of schizophrenia over a dose range of 40–160 mg/day. This study examined D2 receptor occupancy and its association with clinical improvement and side effects in patients with schizophrenia or schizoaffective disorder following repeated doses of 80, 120, or 160 mg/day of lurasidone.


Twenty-five patients with The Diagnostic and Statistical Manual of Mental Disorders, 4th ed. (DSM-IV) diagnoses of schizophrenia or schizoaffective disorder were washed out of their antipsychotic medications (5 half-lives) and randomly assigned to 80, 120, or 160 mg/day of lurasidone. Subjects were imaged with 18F-fallypride at baseline and at steady-state lurasidone treatment to determine D2 receptor occupancy.


Blood lurasidone concentration (plus major metabolite), but not dose, significantly correlated with D2 receptor occupancy. D2 receptor occupancy in several subcortical structures is associated with positive but not negative symptom improvement or the presence of movement symptoms.


Blood concentrations greater than 70 ng/mL may be required to achieve a 65% occupancy level in subcortical areas. Intersubject blood concentrations at fixed dose were highly variable and may account for the lack of dose correlations.


Positron emission tomography (PET) occupancy data suggest that greater than 65% occupancy can be achieved across the dose range of 80–160 mg/day and that some patients require higher doses to achieve antipsychotic efficacy; this finding supports prior randomized clinical trial results.

Corresponding author
*Address for correspondence: Steven G. Potkin, MD, Professor of Psychiatry and Human Behavior, Robert R. Sprague Chair in Brain Imaging, University of California–Irvine, 5251 California Avenue, Suite 240, Irvine, CA 92617, USA. (Email
Hide All

This investigator-initiated study was funded by Sunovion Pharmaceuticals.

Hide All
1. Mukherjee, J, Yang, ZY, Brown, T, etal. Preliminary assessment of extrastriatal dopamine D-2 receptor binding in the rodent and nonhuman primate brains using the high affinity radioligand, 18F-fallypride. Nucl Med Biol. 1999; 26(5): 519527.
2. Nakamura, M, Ogasa, M, Guarino, J, etal. Lurasidone in the treatment of acute schizophrenia: a double-blind, placebo-controlled trial. J Clin Psychiatry. 2009; 70(6): 829836.
3. Meyer, JM, Loebel, AD, Schweizer, E. Lurasidone: a new drug in development for schizophrenia. Expert Opin Investig Drugs. 2009; 18(11): 17151726.
4. Ishibashi, T, Horisawa, T, Tokuda, K, etal. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther. 2010; 334(1): 171181.
5. Tarazi, FI, Stahl, SM. Iloperidone, asenapine and lurasidone: a primer on their current status. Expert Opin Pharmacother. 2012; 13(13): 19111922.
6. Mukherjee, J, Christian, BT, Dunigan, KA, etal. Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse. 2002; 46(3): 170188.
7. Nordström, AL, Farde, L, Wiesel, FA, etal. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry. 1993; 33(4): 227235.
8. Citrome, L. Lurasidone for schizophrenia: a review of the efficacy and safety profile for this newly approved second-generation antipsychotic. Int J Clin Pract. 2011; 65(2): 189210.
9. Meltzer, HY, Cucchiaro, J, Silva, R, etal. Lurasidone in the treatment of schizophrenia: a randomized, double-blind, placebo- and olanzapine-controlled study. Am J Psychiatry. 2011; 168(9): 957967.
10. Loebel, A, Cucchiaro, J, Sarma, K, etal. Efficacy and safety of lurasidone 80 mg/day and 160 mg/day in the treatment of schizophrenia: a randomized, double-blind, placebo- and active-controlled trial. Schizophr Res. 2013; 145(1–3): 101109.
11. Koo, TS, Kim, SJ, Lee, J, etal. Quantification of lurasidone, an atypical antipsychotic drug, in rat plasma with high-performance liquid chromatography with tandem mass spectrometry. Biomed Chromatogr. 2011; 25(12): 13891394.
12. Chouinard, G, Margolese, HC. Manual for the extrapyramidal symptom rating scale (ESRS). Schizophr Res. 2005; 76(2–3): 247265.
13. Montgomery, SA, Asberg, M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979; 134(4): 382389.
14. Guy, W. Clinical Global Impression Scale: The ECDEU Assessment Manual for Psychopharmacology—Revised. Volume DHEW, Publ. No. ADM 76, 1976; Vol. 338: 218–222.
15. Kay, SR, Fiszbein, A, Opler, LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987; 13(2): 261276.
16. Sossi, V, de Jong, HWAM, Barker, WC, etal. The second generation HRRT—a multi-centre scanner performance investigation. In: Nuclear Science Symposium Conference Record, 2005. New York: IEEE; 2005: 21952199.
17. Hong, IK, Chung, ST, Kim, HK, etal. Fast forward projection and backward projection algorithm using SIMD. In: Nuclear Science Symposium Conference Record, 2006. New York: IEEE; 2006: 33613368.
18. Hong, I, Burbar, Z, Michel, C. True 3D iterative scatter correction for small bore long axial FOV scanner. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011. New York: IEEE; 2011: 37363738.
19. Logan JFowler, JS, Volkow, ND, etal. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. 1996; 16(5): 834840.
20. Wong, DF, Kuwabara, H, Brašić, JR, etal. Determination of dopamine D2 receptor occupancy by lurasidone using positron emission tomography in healthy male subjects. Psychopharmacology (Berl). In press. DOI: 10.1007/s00213-013-3103-z.
21. Kapur, S, Zipursky, R, Jones, C, Remington, G, Houle, S. Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry. 2000; 157(4): 514520.
22. Farde, L, Wiesel, FA, Halldin, C, Sedvall, G. Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry. 1988; 45(1): 7176.
23. Mamo, D, Kapur, S, Shammi, CM, etal. A PET study of dopamine D2 and serotonin 5-HT2 receptor occupancy in patients with schizophrenia treated with therapeutic doses of ziprasidone. Am J Psychiatry. 2004; 161(5): 818825.
24. Gründer, G, Landvogt, C, Vernaleken, I, etal. The striatal and extrastriatal D2/D3 receptor-binding profile of clozapine in patients with schizophrenia. Neuropsychopharmacology. 2005; 31(5): 10271035.
25. Gründer, G, Fellows, C, Janouschek, H, etal. Brain and plasma pharmacokinetics of aripiprazole in patients with schizophrenia: an [18F] fallypride PET study. Am J Psychiatry. 2008; 165(8): 988995.
26. Rahmioglu, N, Heaton, J, Clement, G, etal. Genetic epidemiology of induced CYP3A4 activity. Pharmacogenet Genomics. 2011; 21(10): 642651.
27. Pinborg, LH, Videbaek, C, Ziebell, M, etal. [123I]epidepride binding to cerebellar dopamine D2/D3 receptors is displaceable: implications for the use of cerebellum as a reference region. Neuroimage. 2007; 34(4): 14501453.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

CNS Spectrums
  • ISSN: 1092-8529
  • EISSN: 2165-6509
  • URL: /core/journals/cns-spectrums
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed