Skip to main content
    • Aa
    • Aa
  • Combinatorics, Probability and Computing, Volume 9, Issue 6
  • November 2000, pp. 549-572

The Maximum Degree of a Random Graph

  • Published online: 01 April 2001

Let 0 < p < 1, q = 1 − p and b be fixed and let G ∈ [Gscr ](n, p) be a graph on n vertices where each pair of vertices is joined independently with probability p. We show that the probability that every vertex of G has degree at most pn + bnpq is equal to (c + o(1))n, for c = c(b) the root of a certain equation. Surprisingly, c(0) = 0.6102 … is greater than ½ and c(b) is independent of p. To obtain these results we consider the complete graph on n vertices with weights on the edges. Taking these weights as independent normal N(p, pq) random variables gives a ‘continuous’ approximation to [Gscr ](n, p) whose degrees are much easier to analyse.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Combinatorics, Probability and Computing
  • ISSN: 0963-5483
  • EISSN: 1469-2163
  • URL: /core/journals/combinatorics-probability-and-computing
Please enter your name
Please enter a valid email address
Who would you like to send this to? *