Skip to main content Accessibility help
×
Home

The classification of triangulated subcategories

  • R. W. THOMASON (a1)

Extract

The first main result of this paper is a bijective correspondence between the strictly full triangulated subcategories dense in a given triangulated category and the subgroups of its Grothendieck group (Thm. 2.1). Since every strictly full triangulated subcategory is dense in a uniquely determined thick triangulated subcategory, this result refines any known classification of thick subcategories to a classification of all strictly full triangulated ones. For example, one can thus refine the famous classification of the thick subcategories of the finite stable homotopy category given by the work of Devinatz–Hopkins–Smith ([Ho], [DHS], [HS] Thm. 7, [Ra] 3.4.3), which is responsible for most of the recent advances in stable homotopy theory. One can likewise refine the analogous classification given by Hopkins and Neeman ([Ho] Sect. 4, [Ne] 1.5) of the thick subcategories of $D(R)_{\rm parf}$, the chain homotopy category of bounded complexes of finitely generated projective $R$-modules, where $R$ is a commutative noetherian ring.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The classification of triangulated subcategories
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The classification of triangulated subcategories
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The classification of triangulated subcategories
      Available formats
      ×

Copyright

MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

The classification of triangulated subcategories

  • R. W. THOMASON (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed