Skip to main content
    • Aa
    • Aa

Modular operads

  • E. GETZLER (a1) (a2) and M. M. KAPRANOV (a2)

We develop a ’higher genus‘ analogue of operads, which we call modular operads, in which graphs replace trees in the definition. We study a functor $F$ on the category of modular operads, the Feynman transform, which generalizes Kontsevich‘s graph complexes and also the bar construction for operads. We calculate the Euler characteristic of the Feynman transform, using the theory of symmetric functions: our formula is modelled on Wick‘s theorem. We give applications to the theory of moduli spaces of pointed algebraic curves.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *