Skip to main content
×
Home
    • Aa
    • Aa

On the core of ideals

  • Craig Huneke (a1) and Ngô Viêt Trung (a2)
Abstract

This paper studies the core of an ideal in a Noetherian local or graded ring. By definition, the core of an ideal is the intersection of all reductions of the ideal. We provide computational formulae for the determination of the core of a graded ring, meaning the core of the unique homogeneous maximal ideal. We then apply the formulae to give answers to several questions raised by Corso, Polini and Ulrich. We are also able to answer in the positive a conjecture raised by these three authors concerning a closed formula for the core. We give a positive answer to their question in the case in which the ring is Cohen–Macaulay with a residue field of characteristic 0, and in the case the ideal is equimultiple.

    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      On the core of ideals
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      On the core of ideals
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      On the core of ideals
      Available formats
      ×
Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Compositio Mathematica
  • ISSN: 0010-437X
  • EISSN: 1570-5846
  • URL: /core/journals/compositio-mathematica
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Keywords: