[1]Assem, I., Simson, D. and Skowroński, A., Elements of the representation theory of associative algebras, 1: Techniques of representation theory, London Mathematical Society Student Texts, vol. 65 (Cambridge University Press, Cambridge, 2006).
[2]Auslander, M. and Smalø, S., Preprojective modules over Artin algebras, J. Algebra 66(1) (1980), 61–122.
[3]Athanasiadis, C., Brady, T., McCammond, J. and Watt, C., h-vectors of generalized associahedra and non-crossing partitions, Int. Math. Res. Not. 2006, 28pp., Art. ID 69705.
[4]Bessis, D., The dual braid monoid, Ann. Sci. École Norm. Sup. (4) 36 (2003), 647–683.
[5]Blass, A. and Sagan, B., Möbius functions of lattices, Adv. Math. 127 (1997), 94–123.
[6]Bourbaki, N., Groupes et algèbres de Lie (Hermann, Paris, 1968).
[7]Brady, T. and Watt, C., K(π,1)’s for Artin groups of finite type, Geom. Dedicata 94 (2002), 225–250.
[8]Brady, T. and Watt, C., Non-crossing partition lattices in finite real reflection groups, Trans. Amer. Math. Soc. 360 (2008), 1983–2005.
[9]Buan, A., Marsh, R., Reineke, M., Reiten, I. and Todorov, G., Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), 572–618.
[10]Buan, A., Marsh, R. and Reiten, I., Cluster mutation via quiver representations, Comment. Math. Helv. 83 (2008), 143–177.
[11]Buan, A., Marsh, R., Reiten, I. and Todorov, G., Clusters and seeds in acyclic cluster algebras, Proc. Amer. Math. Soc. 135(10) (2007), 3049–3060 (with appendix by the above authors, P. Caldero, and B. Keller).
[12]Caldero, P. and Keller, B., From triangulated categories to cluster algebras II, Ann. Sci. École Norm. Sup. (4) 39 (2006), 983–1009.
[13]Caldero, P. and Keller, B., From triangulated categories to cluster algebras, Invent. Math. 172(1) (2008), 169–211.
[14]Crawley-Boevey, W., Exceptional sequences of representations of quivers, in Proceedings of the sixth international conference on representations of algebras (Ottawa, ON, 1992), Carleton–Ottawa Mathematical Lecture Note Series, vol. 14 (Carleton University, Ottawa, ON, 1992), p. 7.
[15]Digne, F., Présentations duales des groupes de tresses de type affine
, Comment. Math. Helv. 81 (2006), 23–47. [16]Dyer, M., On minimal lengths of expressions of Coxeter group elements as products of reflections, Proc. Amer. Math. Soc. 129 (2001), 2591–2595.
[17]Fomin, S. and Zelevinsky, A., Cluster algebras I: foundations, J. Amer. Math. Soc. 15 (2002), 497–529.
[18]Fomin, S. and Zelevinsky, A., Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), 977–1018.
[19]Gabriel, P. and Roiter, A., Representations of finite dimensional algebras (Springer, Berlin, 1992).
[20]Happel, D. and Unger, L., On the quiver of tilting modules, J. Algebra 284 (2005), 847–868.
[21]Humphreys, J., Reflection groups and Coxeter groups (Cambridge University Press, Cambridge, 1990).
[22]Igusa, K. and Schiffler, R., Exceptional sequences and clusters, with an appendix by the authors and H. Thomas, Preprint (2009), arXiv:0901.2590.
[23]Keller, B., On triangulated orbit categories, Doc. Math. 10 (2005), 551–581.
[24]King, A., Moduli of representations of finite-dimensional algebras, Q. J. Math. (2) 45(180) (1994), 515–530.
[25]Kreweras, G., Sur les partitions non croisées d’un cycle, Discrete Math. 1 (1972), 333–350.
[26]Markowsky, G., Primes, irreducibles, and extremal lattices, Order 9 (1992), 265–290.
[27]Marsh, R., Reineke, M. and Zelevinsky, A., Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), 4171–4186.
[28]McConnell, J. and Robson, J., Noncommutative noetherian rings (John Wiley & Sons, Chichester, 1987).
[29]McNamara, P. and Thomas, H., Poset edge-labelling and left modularity, European J. Combin. 27 (2006), 101–113.
[30]Pilkington, A., Convex geometries on root systems, Comm. Alg. 34 (2006), 3183–3202.
[31]Reading, N., Cambrian lattices, Adv. Math. 205 (2006), 313–353.
[32]Reading, N., Clusters, Coxeter-sortable elements and noncrossing partitions, Trans. Amer. Math. Soc. 359 (2007), 5931–5958.
[33]Reading, N., Sortable elements and Cambrian lattices, Algebra Universalis 56 (2007), 411–437.
[34]Reading, N. and Speyer, D., Cambrian fans, J. Eur. Math. Soc. (JEMS) 11 (2009), 407–447.
[35]Reiner, V., Noncrossing partitions for classical reflection groups, Discrete Math. 177 (1997), 195–222.
[36]Riedtmann, C. and Schofield, A., On a simplicial complex associated with tilting modules, Comment. Math. Helv. 66 (1991), 70–78.
[37]Ringel, C., The regular components of the Auslander-Reiten quiver of a tilted algebra, Chinese Ann. Math. Ser. B 9 (1988), 1–18.
[38]Rudakov, A., et al. Helices and vector bundles: seminaire Rudakov, London Mathematical Society Lecture Note Series, vol. 148 (Cambridge University Press, Cambridge, 1990).
[39]Schofield, A., Semi-invariants of quivers, J. London Math. Soc. (2) 43 (1991), 385–395.
[40]Thomas, H., An analogue of distributivity for ungraded lattices, Order 23 (2006), 249–269.