[AB10]Arinkin, D. and Bezrukavnikov, R., *Perverse coherent sheaves*, Mosc. Math. J. 10 (2010), 3–29; 271; MR 2668828 (2011g:14040).

[BR08]Baker, A. and Richter, B., *Uniqueness of **E* _{∞} structures for connective covers, Proc. Amer. Math. Soc. 136 (2008), 707–714; MR 2358512 (2008m:55017).

[Bar13]Barwick, C., *On the algebraic* -*theory of higher categories*, J. Topol., to appear,arXiv:1204.3607. [BL14]Barwick, C. and Lawson, T., *Regularity of structured ring spectra and localization in* -*theory*, Preprint (2014), arXiv:1402.6038. [BS11]Barwick, C. and Schommer-Pries, C., *On the unicity of the homotopy theory of higher categories*, Preprint (2011), arXiv:1112.0040. [BGT13]Blumberg, A. J., Gepner, D. and Tabuada, G., *A universal characterization of higher algebraic **K*-theory, Geom. Topol. 17 (2013), 733–838, doi:10.2140/gt.2013.17.733. [BM08]Blumberg, A. J. and Mandell, M. A., *The localization sequence for the algebraic **K*-theory of topological *K*-theory, Acta Math. 200 (2008), 155–179; MR 2413133 (2009f:19003).

[Joy08a]Joyal, A., *Notes on quasi-categories*, Preprint (2008).

[Joy08b]Joyal, A., The theory of quasi-categories and its applications, Advanced Course on Simplicial Methods in Higher Categories, Vol. 2, Quaderns, vol. 45 (Centre de Recerca Matemàtica, Barcelona, 2008).

[Kel90]Keller, B., *Chain complexes and stable categories*, Manuscripta Math. 67 (1990), 379–417; MR 1052551 (91h:18006).

[Lur09a]Lurie, J., *Higher topos theory*, Annals of Mathematics Studies, vol. 170 (Princeton University Press, Princeton, NJ, 2009); MR 2522659 (2010j:18001).

[Lur09b]Lurie, J., -*categories and the Goodwillie calculus I*, Preprint (2009).

[Lur11]Lurie, J., *Derived algebraic geometry VIII. Quasi-coherent sheaves and Tannaka duality theorems*, Preprint (2011).

[Lur12]Lurie, J., *Higher algebra*, Preprint (2012).

[Nee97a]Neeman, A., *K*-theory for triangulated categories. I(A). Homological functors, Asian J. Math. 1 (1997), 330–417; MR 1491990 (99m:18008a).

[Nee97b]Neeman, A., *K*-theory for triangulated categories. I(B). Homological functors, Asian J. Math. 1 (1997), 435–529; MR 1604910 (99m:18008b).

[Nee98a]Neeman, A., *K*-theory for triangulated categories. II. The subtlety of the theory and potential pitfalls, Asian J. Math. 2 (1998), 1–125; MR 1656552 (2000m:19008).

[Nee98b]Neeman, A., *K*-theory for triangulated categories. III(A). The theorem of the heart, Asian J. Math. 2 (1998), 495–589; MR 1724625.

[Nee99]Neeman, A., *K*-theory for triangulated categories. III(B). The theorem of the heart, Asian J. Math. 3 (1999), 557–608; MR 1793672.

[Nee00a]Neeman, A., *K*-theory for triangulated categories 3½. A. A detailed proof of the theorem of homological functors, *K*-Theory 20 (2000), 97–174; special issues dedicated to Daniel Quillen on the occasion of his sixtieth birthday, Part II; MR 1798824 (2002b:18014).

[Nee00b]Neeman, A., *K*-theory for triangulated categories 3½. B. A detailed proof of the theorem of homological functors, *K*-Theory 20 (2000), 243–298; special issues dedicated to Daniel Quillen on the occasion of his sixtieth birthday, Part III; MR 1798828 (2002b:18015).

[Nee01]Neeman, A., *K*-theory for triangulated categories 3¾: a direct proof of the theorem of the heart, *K*-Theory 22 (2001), 1–144; MR 1828612 (2002f:19004).

[Nee05]Neeman, A., *The **K*-theory of triangulated categories, Handbook of K-Theory, vols 1, 2 (Springer, Berlin, 2005), 1011–1078; MR 2181838 (2006g:19004).

[Sch02]Schlichting, M., *A note on **K*-theory and triangulated categories, Invent. Math. 150 (2002), 111–116; MR 1930883 (2003h:18015).

[TT90]Thomason, R. W. and Trobaugh, T., *Higher algebraic **K*-theory of schemes and of derived categories, in The Grothendieck festschrift, Vol. III, Progress in Mathematics, vol. 88 (Birkhäuser, Boston, MA, 1990), 247–435; MR 92f:19001.

[Toe05]Toën, B., *Vers une axiomatisation de la théorie des catégories supérieures*, *K*-Theory 34 (2005), 233–263; MR 2182378 (2006m:55041).

[Wal85]Waldhausen, F., *Algebraic **K*-theory of spaces, in Algebraic and geometric topology (New Brunswick, NJ, 1983), Lecture Notes in Mathematics, vol. 1126 (Springer, Berlin, 1985), 318–419; MR 86m:18011.

[YZ06]Yekutieli, A. and Zhang, J. J., *Dualizing complexes and perverse sheaves on noncommutative ringed schemes*, Selecta Math. (N.S.) 12 (2006), 137–177; MR 2244264 (2008d:14004).