Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-gszfc Total loading time: 0.281 Render date: 2022-06-28T22:35:28.921Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Age 18–30 trajectories of binge drinking frequency and prevalence across the past 30 years for men and women: Delineating when and why historical trends reversed across age

Published online by Cambridge University Press:  24 January 2022

Justin Jager*
Affiliation:
T. Denny Sanford School of Social and Family Dynamics, Arizona State University, Tempe, AZ, USA
Katherine M. Keyes
Affiliation:
Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
Daye Son
Affiliation:
T. Denny Sanford School of Social and Family Dynamics, Arizona State University, Tempe, AZ, USA
Megan E. Patrick
Affiliation:
Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
Jonathan Platt
Affiliation:
Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
John E. Schulenberg
Affiliation:
Institute for Social Research, Department of Psychology, University of Michigan, Ann Arbor, MI, USA
*
Corresponding author: Justin Jager, email: justin.jager@asu.edu

Abstract

Historical analyses based on US data indicate that recent cohorts engage in lower binge drinking at age 18 relative to past cohorts, but by the mid- to late-20s the reverse is true: recent cohorts engage in higher binge drinking relative to past cohorts. We pinpoint when – both developmentally and historically – this reversal manifested, examine possible reasons for this reversal, and examine sex convergence in these developmental and historical patterns. As part of the US national Monitoring the Future Study, over 75,000 youths from the high school classes of 1976–2006 were surveyed biennially between ages 18 and 30. We found that the reversal primarily manifested between ages 18 and 24 for men and 18 and 22 for women. We also found that the reversal emerged gradually across the last three decades, suggesting it is the result of a broad and durable historical shift. Our findings indicated that historical variation in social roles and minimum legal drinking age collectively accounted for only a modest amount of the reversal, although marriage was the most influential among the factors examined here. Finally, we found evidence that sex convergence in binge drinking was developmentally limited and far more pronounced at the beginning of the transition to adulthood.

Type
Regular Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bachman, J. G., Wadsworth, K. N., OʼMalley, P. M., Johnston, L. D., & Schulenberg, J. E. (1997). Smoking, drinking, and drug Use in young adulthood: The impacts of new freedoms and new responsibilities. Psychology Press. Google Scholar
Belsky, J. (1981). “Child maltreatment: An ecological integration”: In response to Gabinet. American Psychologist, 36, 322323. https://doi.org/10.1037/0003-066X.36.3.322 CrossRefGoogle Scholar
Belsky, J. (1993). Etiology of child maltreatment: A developmental-ecological analysis. Psychological Bulletin, 114, 413434. https://doi.org/10.1037/0033-2909.114.3.413 CrossRefGoogle ScholarPubMed
Booker, C. L., Harding, S., & Benzeval, M. (2011). A systematic review of the effect of retention methods in population-based cohort studies. BMC Public Health, 11, 249. https://doi.org/10.1186/1471-2458-11-249 CrossRefGoogle ScholarPubMed
Bouchery, E. E., Harwood, H. J., Sacks, J. J., Simon, C. J., & Brewer, R. D. (2011). Economic costs of excessive alcohol consumption in the U.S., 2006. American Journal of Preventive Medicine, 41, 516524. https://doi.org/10.1016/j.amepre.2011.06.045 CrossRefGoogle ScholarPubMed
Bronfenbrenner, U. (1994). Ecological models of human development. In readings on the development of children. International Encyclopedia of Education, 3, 7.Google Scholar
Cederbaum, A. I. (2012). Alcohol metabolism. Clinics in Liver Disease, 16, 667685. https://doi.org/10.1016/j.cld.2012.08.002 CrossRefGoogle ScholarPubMed
Centers for Disease Control and Prevention (CDC). (2012). Vital signs: Binge drinking prevalence, frequency, and intensity among adults – United States, 2010. Morbidity and Mortality Weekly Report, 61, 1419. http://www.ncbi.nlm.nih.gov/pubmed/22237031 Google Scholar
Chen, C. M., Dufour, M. C., & Yi, H. Y. (2005). Alcohol consumption among young adults ages 18–24 in the United States: Results from the 2001–2002 NESARC survey. Alcohol Research and Health, 28, 269280.Google Scholar
Cheng, H. G., & Anthony, J. C. (2018). Male-female differences in the onset of heavy drinking episode soon after first full drink in contemporary United States: From early adolescence to young adulthood. Drug and Alcohol Dependence, 190, 159165. https://doi.org/10.1016/j.drugalcdep.2017.12.035 CrossRefGoogle ScholarPubMed
Cheng, H. G., Cantave, M. D., & Anthony, J. C. (2016). Alcohol experiences viewed mutoscopically: Newly incident drinking of 12- to 25-year-olds in the United States, 2002–2013. Journal of Studies on Alcohol and Drugs, 77, 405412. https://doi.org/10.15288/jsad.2016.77.405 CrossRefGoogle ScholarPubMed
Cheung, Y. B. (2007). A modified least-squares regression approach to the estimation of risk difference. American Journal of Epidemiology, 166, 13371344. https://doi.org/10.1093/aje/kwm223 CrossRefGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (2002). A developmental psychopathology perspective on adolescence. Journal of Consulting and Clinical Psychology, 70, 620. https://doi.org/10.1037/0022-006X.70.1.6 CrossRefGoogle ScholarPubMed
Cicchetti, D., Toth, S. L., & Maughan, A. (2000). An ecological–transactional model of child maltreatment. In Sameroff, A. J., Lewis, M., & Miller, S. M. (Eds.), Handbook of developmental psychopathology (pp. 689722). Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-4163-9_37 CrossRefGoogle Scholar
Dawson, D. A., Goldstein, R. B., Saha, T. D., & Grant, B. F. (2015). Changes in alcohol consumption: United States, 2001–2002 to 2012–2013. Drug and Alcohol Dependence, 148, 5661. https://doi.org/10.1016/j.drugalcdep.2014.12.016 CrossRefGoogle ScholarPubMed
Galea, S., & Tracy, M. (2007). Participation rates in epidemiologic studies. Annals of Epidemiology, 17, 643653. https://doi.org/10.1016/j.annepidem.2007.03.013 CrossRefGoogle ScholarPubMed
Grucza, R. A., Norberg, K. E., & Bierut, L. J. (2009). Binge drinking among youths and young adults in the United States: 1979–2006. Journal of the American Academy of Child and Adolescent Psychiatry, 48, 692702. https://doi.org/10.1097/CHI.0b013e3181a2b32f CrossRefGoogle Scholar
Grucza, R. A., Sher, K. J., Kerr, W. C., Krauss, M. J., Lui, C. K., McDowell, Y. E., Hartz, S., Virdi, G., & Bierut, L. J. (2018). Trends in adult alcohol use and binge drinking in the early 21st-century United States: A meta-analysis of 6 national survey series. Alcoholism: Clinical and Experimental Research, 42, 19391950. https://doi.org/10.1111/acer.13859 CrossRefGoogle ScholarPubMed
Hansen, W. B., Tobler, N. S., & Graham, J. W. (1990). Attrition in substance abuse prevention research: A meta–analysis of 85 longitudinally followed cohorts. Evaluation Review, 14, 677685. https://doi.org/10.1177/0193841X9001400608 CrossRefGoogle Scholar
Hart, J., & Alston, J. M. (2019). Persistent patterns in the U.S. alcohol, market: Looking at the link between demographics and drinking. Journal of Wine Economics, 14, 356364. https://doi.org/10.1017/jwe.2019.26 CrossRefGoogle Scholar
Hedlund, J. H., Ulmer, R. G., & Preusser, D. F. (2001). Determine why there are fewer young alcohol-impaired drivers. National Highway Transportation Association. http://www.nhtsa.dot.gov/people/injury/research/FewerYoungDrivers/index.htm%5Cnhttp://ntl.bts.gov/lib/26000/26000/26030/DOT-HS-809-348.pdf CrossRefGoogle Scholar
Hing, son, R. W., Zha, W., & Weitzman, E. R. (2009). Magnitude of and trends in alcohol-related mortality and morbidity among U.S. college students ages 18–24, 1998–2005. Journal of Studies on Alcohol and Drugs Supplement, s16, 1220. https://doi.org/10.15288/jsads.2009.s16.12 Google Scholar
Hingson, R., Zha, W., & Smyth, D. (2017). Magnitude and trends in heavy episodic drinking, alcohol-impaired driving, and alcohol-related mortality and overdose hospitalizations among emerging adults of college ages 18–24 in the United States, 1998–2014. Journal of Studies on Alcohol and Drugs, 78, 540548. https://doi.org/10.15288/jsad.2017.78.540 CrossRefGoogle ScholarPubMed
Jager, J., Keyes, K. M., & Schulenberg, J. E. (2015). Historical variation in young adult binge drinking trajectories and its link to historical variation in social roles and minimum legal drinking age. Developmental Psychology, 51, 962974. https://doi.org/10.1037/dev0000022 CrossRefGoogle ScholarPubMed
Jager, J., Schulenberg, J. E., O’Malley, P. M., & Bachman, J. G. (2013). Historical variation in drug use trajectories across the transition to adulthood: The trend toward lower intercepts and steeper, ascending slopes. Development and Psychopathology, 25, 527543. https://doi.org/10.1017/S0954579412001228 CrossRefGoogle ScholarPubMed
Karlamangla, A., Zhou, K., Reuben, D., Greendale, G., & Moore, A. (2006). Longitudinal trajectories of heavy drinking in adults in the United States of America. Addiction, 101, 9199. https://doi.org/10.1111/j.1360-0443.2005.01299.x CrossRefGoogle ScholarPubMed
Kerr, W. C., Greenfield, T. K., Ye, Y., Bond, J., & Rehm, J. (2013). Are the 1976–1985 birth cohorts heavier drinkers? Age-period-cohort analyses of the national alcohol surveys 1979–2010. Addiction, 108, 10381048. https://doi.org/10.1111/j.1360-0443.2012.04055.x CrossRefGoogle ScholarPubMed
Keyes, K. M., Jager, J., Mal-Sarkar, T., Patrick, M. E., Rutherford, C., & Hasin, D. (2019). Is there a recent epidemic of women’s drinking? A critical review of national studies. Alcoholism: Clinical and Experimental Research, 43, 13441359. https://doi.org/10.1111/acer.14082 CrossRefGoogle Scholar
Keyes, K. M., Li, G., & Hasin, D. S. (2011). Birth cohort effects and gender eifferences in alcohol epidemiology: A review and synthesis. Alcoholism: Clinical and Experimental Research, 35, 21012112. https://doi.org/10.1111/j.1530-0277.2011.01562.x CrossRefGoogle ScholarPubMed
Keyes, K. M., & Miech, R. (2013). Age, period, and cohort effects in heavy episodic drinking in the US from 1985 to 2009. Drug and Alcohol Dependence, 132, 140148. https://doi.org/10.1016/j.drugalcdep.2013.01.019 CrossRefGoogle ScholarPubMed
Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford Publications.Google Scholar
Kuntsche, E., Stewart, S. H., & Cooper, M. L. (2008). How stable is the motive – alcohol use link? A cross-national validation of the drinking motives questionnaire revised among adolescents from Switzerland, Canada and the United States. Journal of Studies on Alcohol and Drugs, 69, 388396. https://doi.org/10.15288/jsad.2008.69.388 CrossRefGoogle Scholar
Lee, M. R., & Sher, K. J. (2018). “Maturing out” of binge and problem drinking. Alcohol Research: Current Reviews, 39, 3142.Google ScholarPubMed
Lerner, R. M. (2007). Developmental science, developmental systems, and contemporary theories of human development. In W. Damon & R.M. Lerner (Eds.), Handbook of Child Psychology (pp. 117). Wiley.Google Scholar
Li, F., Duncan, T. E., Duncan, S. C., & Hops, H. (2001). Piecewise growth mixture modeling of adolescent alcohol use data. Structural Equation Modeling, 8, 175204. https://doi.org/10.1207/S15328007SEM0802_2 CrossRefGoogle Scholar
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39, 99128. https://doi.org/10.1207/s15327906mbr3901_4 CrossRefGoogle ScholarPubMed
McCabe, S. E., Veliz, P., Boyd, C. J., & Schulenberg, J. E. (2017). Medical and nonmedical use of prescription sedatives and anxiolytics: Adolescents’ use and substance use disorder symptoms in adulthood. Addictive Behaviors, 65, 296301. https://doi.org/10.1016/j.addbeh.2016.08.021 CrossRefGoogle ScholarPubMed
McCabe, S. E., Veliz, P. T., Boyd, C. J., Schepis, T. S., McCabe, V. V., & Schulenberg, J. E. (2019). A prospective study of nonmedical use of prescription opioids during adolescence and subsequent substance use disorder symptoms in early midlife. Drug and Alcohol Dependence, 194, 377385. https://doi.org/10.1016/j.drugalcdep.2018.10.027 CrossRefGoogle ScholarPubMed
McCabe, S. E., & West, B. T. (2016). Selective nonresponse bias in population-based survey estimates of drug use behaviors in the United States. Social Psychiatry and Psychiatric Epidemiology, 51, 141153. https://doi.org/10.1007/s00127-015-1122-2 CrossRefGoogle ScholarPubMed
Miech, R., Johnston, L., O’Malley, P., Bachman, J., Schulenberg, J., & Patrick, M. (2020). Monitoring the future national survey results on drug use, 1975-2019: Volume I, secondary school students. University of Michigan Google Scholar
Moore, A. A., Gould, R., Reuben, D. B., Greendale, G. A., Carter, M. K., Zhou, K., & Karlamangla, A. (2005). Longitudinal patterns and predictors of alcohol consumption in the United States. American Journal of Public Health, 95, 458464. https://doi.org/10.2105/AJPH.2003.019471 CrossRefGoogle ScholarPubMed
Mortimer, J. T. (2015). Social change and entry to adulthood. Emerging Trends in the Social and Behavioral Sciences, 2015, 117. https://doi.org/10.1002/9781118900772.etrds0305 Google Scholar
Muthén, L. K., & Muthén, B. O. (2017). Mplus user’s guide (8th ed.). Muthén & Muthén.Google Scholar
Patrick, M. E., Terry-McElrath, Y. M., Lanza, S. T., Jager, J., Schulenberg, J. E., & O’Malley, P. M. (2019). Shifting age of peak binge drinking prevalence: Historical changes in normative trajectories among young adults aged 18 to 30. Alcoholism: Clinical and Experimental Research, 43, 287298. https://doi.org/10.1111/acer.13933 CrossRefGoogle ScholarPubMed
Pedroza, C., & Thanh Truong, V. T. (2016). Performance of models for estimating absolute risk difference in multicenter trials with binary outcome. BMC Medical Research Methodology, 16, 112. https://doi.org/10.1186/s12874-016-0217-0 CrossRefGoogle ScholarPubMed
Pemberton, M. R., Porter, J. D., Hawkins, S. R., Muhuri, P. K., & Gfroerer, J. C. (2014). The prevalence and influence of risk and protective factors on substance use among youths: National findings from the 2002 to 2008 national surveys on drug use and health. CBHSQ data review. Retrieved June 2020 from https://www.samhsa.gov/data.Google Scholar
Reiter, G. S., Boeckle, M., Reiter, C., & Seltenhammer, M. H. (2020). The impact of total body water on breath alcohol calculations. Wiener Klinische Wochenschrift, 132, 535541. https://doi.org/10.1007/s00508-020-01663-4 CrossRefGoogle ScholarPubMed
Sacks, J. J., Gonzales, K. R., Bouchery, E. E., Tomedi, L. E., & Brewer, R. D. (2015). 2010 national and state costs of excessive alcohol consumption. American Journal of Preventive Medicine, 49, e73e79. https://doi.org/10.1016/j.amepre.2015.05.031 CrossRefGoogle ScholarPubMed
Sameroff, A. (2010). A unified theory of development: A dialectic integration of nature and nurture. Child Development, 81, 622. https://doi.org/10.1111/j.1467-8624.2009.01378.x CrossRefGoogle ScholarPubMed
Satorra, A., & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66, 507514. https://doi.org/10.1007/BF02296192 CrossRefGoogle Scholar
Schechtman, E. (2002). Odds ratio, relative risk, absolute risk reduction, and the number needed to treat – which of these should we use? Value in Health, 5, 431436. https://doi.org/10.1046/j.1524-4733.2002.55150.x CrossRefGoogle ScholarPubMed
Schulenberg, J., Johnston, L., O’Malley, P., Bachman, J., Miech, R., & Patrick, M. (2020). Monitoring the Future national survey results on drug use, 1975-2019: Volume II, college students and adults ages 19–60. University of Michigan Google Scholar
Schulenberg, J., Maslowsky, J., & Jager, J. (2018). Substance use and abuse during adolescence and the transition to adulthood are developmental phenomena: Conceptual and empirical considerations. In Fitzgerald, H. E. & Puttler, L. I. (Eds.), Alcohol use disorders: A developmental science approach to etiology (pp. 199222). Oxford University Press.Google Scholar
Schulenberg, J. E., Patrick, M. E., Kloska, D. D., Maslowsky, J., Maggs, J. L., & O’malley, P. M. (2015). Substance use disorder in early midlife: A national prospective study on health and well-being dorrelates and long-term predictors. Substance Abuse: Research and Treatment, 9, 4157. https://doi.org/10.4137/SART.S31437 Google ScholarPubMed
Schulenberg, J. E., Sameroff, A. J., & Cicchetti, D. (2004). The transition to adulthood as a critical juncture in the course of psychopathology and mental health. Development and Psychopathology, 16, 799806. https://doi.org/10.1017/S0954579404040015 CrossRefGoogle ScholarPubMed
Schwartz, S. J., Forthun, L. F., Ravert, R. D., Zamboanga, B. L., Umaña-Taylor, A. J., Filton, B. J., Kim, S. Y., Rodriguez, L., Weisskirch, R. S., Vernon, M., Shneyderman, Y., Williams, M. K., Agocha, B. V., & Hudson, M. (2010). Identity consolidation and health risk behaviors in college students. American Journal of Health Behavior, 34, 214224. https://doi.org/10.5993/ajhb.34.2.9 CrossRefGoogle ScholarPubMed
Settersten, R. A., Ottusch, T. M., & Schneider, B. (2015). Becoming adult: Meanings of markers to adulthood. Emerging Trends in the Social and Behavioral Sciences, 116. https://doi.org/10.1002/9781118900772.etrds0021 Google Scholar
Sinclair, J. C., & Bracken, M. B. (1994). Clinically useful measures of effect in binary analyses of randomized trials. Journal of Clinical Epidemiology, 47, 881889. https://doi.org/10.1016/0895-4356(94)90191-0 CrossRefGoogle ScholarPubMed
Tobler, N. S., Roona, M. R., Ochshorn, P., Marshall, D. G., Streke, A. V., & Stackpole, K. M. (2000). School-based adolescent drug prevention programs: 1998 Meta-analysis. Journal of Primary Prevention, 20, 275336. https://doi.org/10.1023/A:1021314704811 CrossRefGoogle Scholar
Tofighi, D., & MacKinnon, D. P. (2016). Monte Carlo confidence intervals for complex functions of indirect effects. Structural Equation Modeling, 23, 194205. https://doi.org/10.1080/10705511.2015.1057284 CrossRefGoogle Scholar
Ukoumunne, O. C., Forbes, A. B., Carlin, J. B., & Gulliford, M. C. (2008). Comparison of the risk difference, risk ratio and odds ratio scales for quantifying the unadjusted intervention effect in cluster randomized trials. Statistics in Medicine, 27, 51435155. https://doi.org/10.1002/sim.3359 CrossRefGoogle ScholarPubMed
Wagenaar, A. C., & Toomey, T. L. (2002). Effects of minimum drinking age laws: Review and analyses of the literature from 1960 to 2000. Journal of Studies on Alcohol, 63, 206225. https://doi.org/10.15288/jsas.2002.s14.206 CrossRefGoogle Scholar
Wakefield, M. A., Loken, B., & Hornik, R. C. (2010). Use of mass media campaigns to change health behaviour. The Lancet, 376, 12611271. https://doi.org/10.1016/S0140-6736(10)60809-4 CrossRefGoogle ScholarPubMed
White, A., Castle, I. J. P., Chen, C. M., Shirley, M., Roach, D., & Hingson, R. (2015). Converging patterns of alcohol use and related outcomes among females and males in the United States, 2002 to 2012. Alcoholism: Clinical and Experimental Research, 39, 17121726. https://doi.org/10.1111/acer.12815 CrossRefGoogle ScholarPubMed
White, H. R., Labouvie, E. W., & Papadaratsakis, V. (2005). Changes in substance use during the transition to adulthood: A comparison of college students and their non-college age peers. Journal of Drug Issues, 35, 281305. https://doi.org/10.1177/002204260503500204 CrossRefGoogle Scholar
Zucker, R. A., & Gomberg, E. S. L. (1986). Etiology of alcoholism reconsidered. The case for a biopsychosocial process. American Psychologist, 41, 783793. https://doi.org/10.1037/0003-066X.41.7.783 CrossRefGoogle ScholarPubMed
Supplementary material: File

Jager et al. supplementary material

Jager et al. supplementary material

Download Jager et al. supplementary material(File)
File 477 KB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Age 18–30 trajectories of binge drinking frequency and prevalence across the past 30 years for men and women: Delineating when and why historical trends reversed across age
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Age 18–30 trajectories of binge drinking frequency and prevalence across the past 30 years for men and women: Delineating when and why historical trends reversed across age
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Age 18–30 trajectories of binge drinking frequency and prevalence across the past 30 years for men and women: Delineating when and why historical trends reversed across age
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *