Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-06T23:36:05.279Z Has data issue: false hasContentIssue false

Childhood dyspraxia predicts adult-onset nonaffective–psychosis-spectrum disorder

Published online by Cambridge University Press:  05 January 2015

Jason Schiffman*
Affiliation:
University of Maryland, Baltimore County
Vijay Mittal
Affiliation:
University of Colorado
Emily Kline
Affiliation:
University of Maryland, Baltimore County
Erik L. Mortensen
Affiliation:
University of Copenhagen
Niels Michelsen
Affiliation:
University of Copenhagen
Morten Ekstrøm
Affiliation:
Copenhagen University Hospital
Zachary B. Millman
Affiliation:
University of Maryland, Baltimore County
Sarnoff A. Mednick
Affiliation:
Copenhagen University Hospital
Holger J. Sørensen
Affiliation:
Copenhagen University Hospital
*
Address correspondence and reprint requests to: Jason Schiffman, University of Maryland, Baltimore County, 1000 Hilltop Circle, M/P3, Baltimore, MD 21250; E-mail: schiffma@umbc.edu.

Abstract

Several neurological variables have been investigated as premorbid biomarkers of vulnerability for schizophrenia and other related disorders. The current study examined whether childhood dyspraxia predicted later adult nonaffective–psychosis-spectrum disorders. From a standardized neurological examination performed with children (aged 10–13) at genetic high risk of schizophrenia and controls, several measures of dyspraxia were used to create a scale composed of face/head dyspraxia, oral articulation, ideomotor dyspraxia (clumsiness), and dressing dyspraxia (n = 244). Multinomial logistic regression showed higher scores on the dyspraxia scale predict nonaffective–psychosis-spectrum disorders relative to other psychiatric disorders and no mental illness outcomes, even after controlling for genetic risk, χ2 (4, 244) = 18.61, p < .001. Findings that symptoms of dyspraxia in childhood (reflecting abnormalities spanning functionally distinct brain networks) specifically predict adult nonaffective–psychosis-spectrum disorders are consistent with a theory of abnormal connectivity, and they highlight a marked early-stage vulnerability in the pathophysiology of nonaffective–psychosis-spectrum disorders.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alda, M., Ahrens, B., Lit, W., Dvorakova, M., Labelle, A., Zvolsky, P., et al. (1996). Age of onset in familial and sporadic schizophrenia. Acta Psychiatrica Scandinavica, 93, 447450.Google Scholar
Allin, M., Matsumoto, H., Santhouse, A. M., Nosarti, C., Al-Asady, M. H., Stewart, A. L., et al. (2001). Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain, 124, 6066.Google Scholar
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR. Washington, DC: Author.Google Scholar
Bachmann, S., Bottmer, C., & Schröder, J. (2005). Neurological soft signs in first-episode schizophrenia: A follow-up study. American Journal of Psychiatry, 162, 23372343.Google Scholar
Baron, M., Gruen, R., Rainer, J. D., Kane, J., Asnis, L., & Lord, S. (1985). A family study of schizophrenic and normal control probands: Implications for the spectrum concept of schizophrenia. American Journal of Psychiatry, 142, 447455.Google ScholarPubMed
Blanchard, M. M., Jacobson, S., Clarke, M. C., Connor, D., Kelleher, I., Garavan, H., et al. (2010). Language, motor and speed of processing deficits in adolescents with subclinical psychotic symptoms. Schizophrenia Research, 123, 7176.Google Scholar
Boks, M. P., Russo, S., Knegtering, R., & van den Bosch, R. J. (2000). The specificity of neurological signs in schizophrenia: A review. Schizophrenia Research, 43, 109116.Google Scholar
Bombin, I., Arango, C., & Buchanan, R. W. (2005). Significance and meaning of neurological signs in schizophrenia: Two decades later. Schizophrenia Bulletin, 31, 962977.Google Scholar
Bowens, A., & Smith, I. (1999). Childhood dyspraxia: Some issues for the NHS. Nuffield Portfolio Programme Report No. 2. Leeds: Nuffield Institute for Health.Google Scholar
Bruininks II, R. (1978). Bruininks–Oseretsky Test of Motor Proficiency. Minneapolis, MN: American Guidance Service.Google Scholar
Cannon, M., Jones, P., Huttunen, M. O., Tanskanen, A., Huttunen, T., Rabe-Hesketh, S., et al. (1999). School performance in Finnish children and later development of schizophrenia: A population-based longitudinal study. Archives of General Psychiatry, 56, 457463.Google Scholar
Cantor-Graae, E., Ismail, B., & McNeil, T. F. (2000). Are neurological abnormalities in schizophrenic patients and their siblings the result of perinatal trauma? Acta Psychiatrica Scandinavica, 101, 142147.Google Scholar
Chan, R. C., & Gottesman, I. I. (2008). Neurological soft signs as candidate endophenotypes for schizophrenia: A shooting star or a Northern star? Neuroscience & Biobehavioral Reviews, 32, 957971.CrossRefGoogle ScholarPubMed
Chan, R. C., Xu, T., Heinrichs, R. W., Yu, Y., & Wang, Y. (2010). Neurological soft signs in schizophrenia: A meta-analysis. Schizophrenia Bulletin, 36, 10891104.Google Scholar
de Boer, B. J., Peper, C. E., & Beek, P. J. (2012). Development of temporal and spatial bimanual coordination during childhood. Motor Control, 16, 537559.Google Scholar
Dewey, D. (1995). What is developmental dyspraxia. Brain and Cognition, 29, 254274.Google Scholar
Erlenmeyer-Kimling, L., Rock, D., Roberts, S. A., Janal, M., Kestenbaum, C., Cornblatt, B., et al. (2000). Attention, memory, and motor skills as childhood predictors of schizophrenia-related psychoses: The New York High-Risk Project. American Journal of Psychiatry, 157, 14161422.CrossRefGoogle ScholarPubMed
Fish, B. (1987). Infant predictors of the longitudinal course of schizophrenic development. Schizophrenia Bulletin, 13, 395409.Google Scholar
Fish, B., Marcus, J., Hans, S. L., Auerbach, J. G., & Purdue, S. (1992). Infants at risk for schizophrenia: Sequelae of a genetic neurointegrative defect. JAMA Psychiatry, 49, 221235.Google Scholar
Friston, K. J. (1999). Schizophrenia and the disconnection hypothesis. Acta Psychiatrica Scandinavica, 99, 6879.CrossRefGoogle Scholar
Garrity, A., Pearlson, G., McKiernan, K., Lloyd, D., Kiehl, K., & Calhoun, V. (2007). Aberrant “default mode” functional connectivity in schizophrenia. American Journal of Psychiatry, 164, 450457.Google Scholar
Gesell, A., Amatruda, C. S., Knobloch, H., & Pasamanick, B. (1974). Developmental diagnosis. New York: Harper & Row.Google Scholar
Golembo-Smith, S., Schiffman, J., Kline, E., Sørensen, H. J., Mortensen, E. L., Stapleton, L., et al. (2012). Premorbid multivariate markers of neurodevelopmental instability in the prediction of adult schizophrenia–spectrum disorder: A high-risk prospective investigation. Schizophrenia Research, 139, 129135.Google Scholar
Henderson, S. E., & Sugden, D. A. (1992). Movement Assessment Battery for Children manual. London: Psychological Corporation.Google Scholar
Hertza, J., & Estes, B. (2011). Developmental dyspraxia and developmental coordination disorder. In Davis, A. S. (Ed.), Handbook of pediatric neuropsychology (pp. 593602). New York: Springer.Google Scholar
Jones, P., Rodgers, B., Murray, R., & Marmot, M. (1994). Child development risk factors for adult schizoprhiena in the British 1946 birth cohort. Lancet, 344, 13981402.CrossRefGoogle ScholarPubMed
Kaufman, N. R. (1995). The Kaufman Speech Praxis: Test for Children. Detroit, MI: Wayne State University Press.Google Scholar
Kendler, K. S., McGuire, M., Gruenberg, A. M., & O'Hare, A. (1993). The Roscommon Family Study: I. Methods, diagnosis of probands, and risk of schizophrenia in relatives. JAMA Psychiatry, 50, 527540.Google Scholar
Kinney, D. K., Yurgelun-Todd, D. A., & Woods, B. T. (1999). Neurologic signs of cerebellar and cortical sensory dysfunction in schizophrenics and their relatives. Schizophrenia Research, 35, 99104.CrossRefGoogle ScholarPubMed
Konrad, A., & Winterer, G. (2008). Disturbed structural connectivity in schizophrenia—Primary factor in pathology or epiphenomenon? Schizophrenia Bulletin, 34, 7292.CrossRefGoogle ScholarPubMed
Lawrie, S. M., Byrne, M., Miller, P., Hodges, A., Clafferty, R. A., Owens, D. G. C., et al. (2001). Neurodevelopmental indices and the development of psychotic symptoms in subjects at high risk of schizophrenia. British Journal of Psychiatry, 178, 524530.CrossRefGoogle ScholarPubMed
Leask, S. J., Done, D. J., & Crow, T. J. (2002). Adult psychosis, common childhood infections and neurological soft signs in a national birth cohort. British Journal of Psychiatry, 181, 387392.Google Scholar
Lingam, R., Hunt, L., Golding, J., Jongmans, M., & Emond, A. (2009). Prevalence of developmental coordination disorder using the DSM-IV at 7 years of age: A UK population–based study. Pediatrics, 123, e693e700.CrossRefGoogle ScholarPubMed
Löffler, W., Häfner, H., Fätkenheuer, B., Maurer, K., Riecher-Rössler, A., Lützhøft, J., et al. (1994). Validation of Danish case register diagnosis for schizophrenia. Acta Psychiatrica Scandinavica, 90, 196203.Google Scholar
Losse, A., Henderson, S. E., Elliman, D., Hall, D., Knight, E., & Jongmans, M. (1991). Clumsiness in children—Do they grow out of it? A 10-year follow-up study. Developmental Medicine & Child Neurology, 33, 5568.Google Scholar
Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., et al. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30, 94779487.Google Scholar
MacNeil, L. K., & Mostofsky, S. H. (2012). Specificity of dyspraxia in children with autism. Neuropsychology, 26, 165171.Google Scholar
Mednick, S. A., Mura, E., Schulsinger, F., & Mednick, B. (1971). Perinatal conditions and infant development in children with schizophrenic parents. Social Biology, 18, S103S113.Google ScholarPubMed
Michel, E., Roethlisberger, M., Neuenschwander, R., & Roebers, C. M. (2011). Development of cognitive skills in children with motor coordination impairments at 12-month follow-up. Child Neuropsychology, 17, 151172.Google Scholar
Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31, 236250.Google Scholar
Miller, M., Chukoskie, L., Zinni, M., Townsend, J., & Trauner, D. (2014). Dyspraxia, motor function and visual–motor integration in autism. Behavioural Brain Research, 269, 95102.Google Scholar
Rosso, I. M., Bearden, C. E., Hollister, J. M., Gasperoni, T. L., Sanchez, L. E., Hadley, T., et al. (2000). Childhood neuromotor dysfunction in schizophrenia patients and their unaffected siblings: A prospective cohort study. Schizophrenia Bulletin, 26, 367378.Google Scholar
Schiffman, J., Sorensen, H., Maeda, J., Mortensen, E., Victoroff, J., Hayashi, K., et al. (2009). Childhood motor coordination and adult schizophrenia spectrum disorders. American Journal of Psychiatry, 166, 10411047.Google Scholar
Schiffman, J., Walker, E., Ekstrom, M., Schulsinger, F., Sorensen, H., & Mednick, S. (2004). Childhood videotaped social and neuromotor precursors of schizophrenia: A prospective investigation. American Journal of Psychiatry, 161, 20212027.Google Scholar
Sørensen, H. J., Mortensen, E. L., Schiffman, J., Ekstrøm, M., Denenney, D., & Mednick, S. A. (2010). Premorbid IQ and adult schizophrenia spectrum disorder: Verbal performance subtests. Psychiatry Research, 178, 2326.Google Scholar
Spitzer, R. L., Williams, J. B., Gibbon, M., & First, M. B. (1992). The Structured Clinical Interview for DSM-III-R (SCID) I: History, rationale, and description. Archives of General Psychiatry, 49, 624629.CrossRefGoogle ScholarPubMed
Stengel, T. J., Attermeier, S. M., Bly, L., & Heriza, C. B. (1984). Evaluation of sensorimotor dysfunction. Pediatric Neurologic Physical Therapy, 22, 1387.Google Scholar
Tienari, P., Wynne, L. C., Läksy, K., Moring, J., Nieminen, P., Sorri, A., et al. (2003). Genetic boundaries of the schizophrenia spectrum: Evidence from the Finnish adoptive family study of schizophrenia. American Journal of Psychiatry, 160, 15871594.Google Scholar
Torrey, E. F., Taylor, E. H., Bracha, H. S., & Bowler, A. E. (1994). Prenatal origin of schizophrenia in a subgroup of discordant monozygotic twins. Schizophrenia Bulletin, 20, 423432.Google Scholar
Touwen, B. C. L., & Prechtl, H. F. (1970). The neurological examination of the child with minor nervous dysfunction (Rep. No. 38). Charlotte, NC: Heinemann Medical.Google Scholar
Walker, E. F., Savoie, T., & Davis, D. (1994). Neuromotor precursors of schizophrenia. Schizophrenia Bulletin, 20, 441451.Google Scholar
Williams, J., Omizzolo, C., Galea, M. P., & Vance, A. (2012). Motor imagery skills of children with attention-deficit/hyperactivity disorder and developmental coordination disorder. Human Movement Science, 32, 121135.Google Scholar
Wing, J. K., Nixon, J. M., Mann, S. A., & Leff, J. P. (1977). Reliability of the PSE used in a population study. Psychological Medicine, 7, 505516.Google Scholar
Zabala, A., Robles, O., Parellada, M., Moreno, D. M., Ruiz-Sancho, A., Burdalo, M., et al. (2006). Neurological soft signs in adolescents with first episode psychosis. European Psychiatry, 25, 283287.Google Scholar
Zhao, Q., Li, Z., Huang, J., Yan, C., Dazzan, P., Pantelis, C., et al. (2013). Neurological soft signs are not “soft” in brain structure and functional networks: Evidence from ALE meta-analysis. Schizophrenia Bulletin. Advance online publication.Google Scholar