Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T01:26:35.479Z Has data issue: false hasContentIssue false

Differential susceptibility effects of oxytocin gene (OXT) polymorphisms and perceived parenting on social anxiety among adolescents

Published online by Cambridge University Press:  13 June 2017

Susanne Olofsdotter*
Affiliation:
Uppsala University
Cecilia Åslund
Affiliation:
Uppsala University
Tomas Furmark
Affiliation:
Uppsala University
Erika Comasco
Affiliation:
Uppsala University
Kent W. Nilsson
Affiliation:
Uppsala University
*
Address correspondence and reprint requests to: Susanne Olofsdotter, Center for Clinical Research, Västmanland County Hospital, Västerås SE-721 89, Sweden; E-mail: susanne.olofsdotter@regionvastmanland.se.

Abstract

Social anxiety is one of the most commonly reported mental health problems among adolescents, and it has been suggested that parenting style influences an adolescent's level of anxiety. A context-dependent effect of oxytocin on human social behavior has been proposed; however, research on the oxytocin gene (OXT) has mostly been reported without considering contextual factors. This study investigated the interactions between parenting style and polymorphic variations in the OXT gene in association with social anxiety symptoms in a community sample of adolescents (n = 1,359). Two single nucleotide polymorphisms linked to OXT, rs4813625 and rs2770378, were genotyped. Social anxiety and perceived parenting style were assessed by behavioral questionnaires. In interaction models adjusted for sex, significant interaction effects with parenting style were observed for both variants in relation to social anxiety. The nature of the interactions was in line with the differential susceptibility framework for rs4813625, whereas for rs2770378 the results indicated a diathesis–stress type of interaction. The findings may be interpreted from the perspective of the social salience hypothesis of oxytocin, with rs4813625 affecting social anxiety levels along a perceived unsafe–safe social context dimension.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

We are grateful to the adolescents and their parents, and to members and associates of the Centre for Clinical Research, Västerås, for taking part in this study. Grants from the following funds and organizations are acknowledged: Svenska Spel Research Council, the Uppsala and Örebro Regional Research Council (RFR-309941), the Fredrik and Ingrid Thurings Foundation, the County Council of Västmanland, the Söderström–König Foundation (SLS-559921), the Brain Foundation (F02015-0315), the Swedish Research Council for Health, Working Life and Welfare (FORTE 2015-00897), and Åke Wiberg's foundation (MI5-0239). Erika Comasco is a Marie Skłodowska Curie Fellow and received funds from the Swedish Research Council (VR 2015-00495) and EU FP7-People-Cofund (INCA 600398). The sponsors of the study had no role in the study design, data collection, data analysis, data interpretation, or writing of the report.

References

Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2013). Sniffing around oxytocin: Review and meta-analyses of trials in healthy and clinical groups with implications for pharmacotherapy. Translational Psychiatry, 3, e258. doi:10.1038/tp.2013.34Google Scholar
Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2014). A sociability gene? Meta-analysis of oxytocin receptor genotype effects in humans. Psychiatric Genetics, 24, 4551. doi:10.1097/YPG.0b013e3283643684Google Scholar
Bartz, J. A., Zaki, J., Bolger, N., & Ochsner, K. N. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Sciences, 15, 301309. doi:10.1016/j.tics.2011.05.002Google Scholar
Baskerville, T. A., & Douglas, A. J. (2010). Dopamine and oxytocin interactions underlying behaviors: Potential contributions to behavioral disorders. CNS Neuroscience & Therapeutics, 16, e92e123. doi:10.1111/j.1755-5949.2010.00154.xGoogle Scholar
Beesdo, K., Knappe, S., & Pine, D. S. (2009). Anxiety and anxiety disorders in children and adolescents: Developmental issues and implications for DSM-V. Psychiatric Clinics of North America, 32, 483524. doi:10.1016/j.psc.2009.06.002Google Scholar
Belsky, J., & Hartman, S. (2014). Gene-environment interaction in evolutionary perspective: Differential susceptibility to environmental influences. World Psychiatry, 13, 8789. doi:10.1002/wps.20092Google Scholar
Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885908. doi:10.1037/a0017376Google Scholar
Belsky, J., & Pluess, M. (2013). Beyond risk, resilience, and dysregulation: Phenotypic plasticity and human development. Development and Psychopathology, 25, 12431261. doi:10.1017/S095457941300059XGoogle Scholar
Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in motivational control: Rewarding, aversive, and alerting. Neuron, 68, 815834. doi:10.1016/j.neuron.2010.11.022Google Scholar
Brune, M. (2012). Does the oxytocin receptor (OXTR) polymorphism (rs2254298) confer “vulnerability” for psychopathology or “differential susceptibility”? Insights from evolution. BMC Medicine, 10, 38. doi:10.1186/1741-7015-10-38Google Scholar
Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafo, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14, 365376. doi:10.1038/nrn3475Google Scholar
Carson, D. S., Berquist, S. W., Trujillo, T. H., Garner, J. P., Hannah, S. L., Hyde, S. A., … Parker, K. J. (2015). Cerebrospinal fluid and plasma oxytocin concentrations are positively correlated and negatively predict anxiety in children. Molecular Psychiatry, 20, 10851090. doi:10.1038/mp.2014.132Google Scholar
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., … Poulton, R. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851854. doi:10.1126/science.1072290Google Scholar
Copeland, W. E., Angold, A., Shanahan, L., & Costello, E. J. (2014). Longitudinal patterns of anxiety from childhood to adulthood: The Great Smoky Mountains Study. Journal of the American Academy of Child & Adolescent Psychiatry, 53, 2133. doi:10.1016/j.jaac.2013.09.017Google Scholar
Darlington, R. B., & Hayes, A. F. (2017). Regression analysis and linear models: Concepts, applications, and implementation. New York: Guilford Press.Google Scholar
Del Giudice, M. (2017). Statistical tests of differential susceptibility: Performance, limitations, and improvements. Development and Psychopathology. Advance online publication. doi:10.1017/S0954579416001292Google Scholar
Dick, D. M., Adkins, A. E., & Kuo, S. I. (2016). Genetic influences on adolescent behavior. Neuroscience and Biobehavioral Reviews, 70, 198205. doi:10.1016/j.neubiorev.2016.07.007Google Scholar
Dick, D. M., Agrawal, A., Keller, M. C., Adkins, A., Aliev, F., Monroe, S., … Sher, K. J. (2015). Candidate gene-environment interaction research: Reflections and recommendations. Perspectives on Psychological Science, 10, 3759. doi:10.1177/1745691614556682Google Scholar
Dodhia, S., Hosanagar, A., Fitzgerald, D. A., Labuschagne, I., Wood, A. G., Nathan, P. J., & Phan, K. L. (2014). Modulation of resting-state amygdala-frontal functional connectivity by oxytocin in generalized social anxiety disorder. Neuropsychopharmacology, 39, 20612069. doi:10.1038/npp.2014.53Google Scholar
Ebstein, R. P., Knafo, A., Mankuta, D., Chew, S. H., & Lai, P. S. (2012). The contributions of oxytocin and vasopressin pathway genes to human behavior. Hormones and Behavior, 61, 359379. doi:10.1016/j.yhbeh.2011.12.014Google Scholar
Eccles, J. S., Buchanan, C. M., Flanagan, C., Fuligni, A., Midgley, C., & Yee, D. (1991). Control versus autonomy during early adolescence. Journal of Social Issues, 47, 5368. doi:10.1111/j.1540-4560.1991.tb01834.xGoogle Scholar
Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 728. doi:10.1017/S0954579410000611Google Scholar
Else-Quest, N. M., Clark, R., & Owen, M. T. (2011). Stability in mother-child interactions from infancy through adolescence. Parenting, Science and Practice, 11, 280287. doi:10.1080/15295192.2011.613724Google Scholar
Feldman, R., Monakhov, M., Pratt, M., & Ebstein, R. P. (2016). Oxytocin pathway genes: Evolutionary ancient system impacting on human affiliation, sociality, and psychopathology. Biological Psychiatry, 79, 174184. doi:10.1016/j.biopsych.2015.08.008Google Scholar
Feldman, R., Zagoory-Sharon, O., Weisman, O., Schneiderman, I., Gordon, I., Maoz, R., … Ebstein, R. P. (2012). Sensitive parenting is associated with plasma oxytocin and polymorphisms in the OXTR and CD38 genes. Biological Psychiatry, 72, 175181. doi:10.1016/j.biopsych.2011.12.025Google Scholar
Francis, S. M., Kistner-Griffin, E., Yan, Z., Guter, S., Cook, E. H., & Jacob, S. (2016). Variants in adjacent oxytocin/vasopressin gene region and associations with ASD diagnosis and other autism related endophenotypes. Frontiers in Neuroscience, 10, 195. doi:10.3389/fnins.2016.00195Google Scholar
Garmezy, N. (1974). Children at risk: The search for the antecedents of schizophrenia: Part II. Ongoing research programs, issues, and intervention. Schizophrenia Bulletin, 9, 55125.Google Scholar
Gauderman, W. J., & Morrison, J. M. (2006). Quanto 1.1: A computer program for power and sample size calculations for gene-epidemiology studies [Computer software]. Retrieved from http://hydra.usc.edu/gxeGoogle Scholar
Ginsburg, G. S., Becker, E. M., Keeton, C. P., Sakolsky, D., Piacentini, J., Albano, A. M., … Kendall, P. C. (2014). Naturalistic follow-up of youths treated for pediatric anxiety disorders. JAMA Psychiatry, 71, 310318. doi:10.1001/jamapsychiatry.2013.4186Google Scholar
Gordon, I., Martin, C., Feldman, R., & Leckman, J. F. (2011). Oxytocin and social motivation. Developmental Cognitive Neuroscience, 1, 471493. doi:10.1016/j.dcn.2011.07.007Google Scholar
Gorka, S. M., Fitzgerald, D. A., Labuschagne, I., Hosanagar, A., Wood, A. G., Nathan, P. J., & Phan, K. L. (2015). Oxytocin modulation of amygdala functional connectivity to fearful faces in generalized social anxiety disorder. Neuropsychopharmacology, 40, 278286. doi:10.1038/npp.2014.168Google Scholar
Gren-Landell, M., Tillfors, M., Furmark, T., Bohlin, G., Andersson, G., & Svedin, C. G. (2009). Social phobia in Swedish adolescents: Prevalence and gender differences. Social Psychiatry and Psychiatric Epidemiology, 44, 17. doi:10.1007/s00127-008-0400-7Google Scholar
Hammen, C., Bower, J. E., & Cole, S. W. (2015). Oxytocin receptor gene variation and differential susceptibility to family environment in predicting youth borderline symptoms. Journal of Personality Disorders, 29, 177192. doi:10.1521/pedi_2014_28_152Google Scholar
Hayes, A. F. (2013). Introduction to mediation, moderation and conditional process analysis. New York: Guilford Press.Google Scholar
Heim, C., Young, L. J., Newport, D. J., Mletzko, T., Miller, A. H., & Nemeroff, C. B. (2008). Lower CSF oxytocin concentrations in women with a history of childhood abuse. Molecular Psychiatry, 14, 954958.Google Scholar
Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54, 13891398. doi:10.1016/S0006-3223(03)00465-7Google Scholar
Heinrichs, M., von Dawans, B., & Domes, G. (2009). Oxytocin, vasopressin, and human social behavior. Frontiers in Neuroendocrinology, 30, 548557. doi:10.1016/j.yfrne.2009.05.005Google Scholar
Hovey, D., Zettergren, A., Jonsson, L., Melke, J., Anckarsater, H., Lichtenstein, P., & Westberg, L. (2014). Associations between oxytocin-related genes and autistic-like traits. Social Neuroscience, 9, 378386. doi:10.1080/17470919.2014.897995Google Scholar
Kessler, R. C., Avenevoli, S., Costello, E. J., Georgiades, K., Green, J. G., Gruber, M. J., … Merikangas, K. R. (2012). Prevalence, persistence, and sociodemographic correlates of DSM-IV disorders in the National Comorbidity Survey Replication Adolescent Supplement. Archives of General Psychiatry, 69, 372380. doi:10.1001/archgenpsychiatry.2011.160Google Scholar
Kirsch, P. (2015). Oxytocin in the socioemotional brain: Implications for psychiatric disorders. Dialogues in Clinical Neuroscience, 17, 463476.Google Scholar
Knobloch, H. S., & Grinevich, V. (2014). Evolution of oxytocin pathways in the brain of vertebrates. Frontiers in Behavioral Neuroscience, 8. doi:10.3389/fnbeh.2014.00031Google Scholar
Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435, 673676. doi:10.1038/nature03701Google Scholar
Kumsta, R., & Heinrichs, M. (2013). Oxytocin, stress and social behavior: Neurogenetics of the human oxytocin system. Current Opinion in Neurobiology, 23, 1116. doi:10.1016/j.conb.2012.09.004Google Scholar
LeDoux, J. E. (2015). Anxious: The modern mind in the age of anxiety. London: Oneworld.Google Scholar
Lee, H. J., Macbeth, A. H., Pagani, J. H., & Young, W. S. III. (2009). Oxytocin: The great facilitator of life. Progress in Neurobiology, 88, 127151. doi:10.1016/j.pneurobio.2009.04.001Google Scholar
LoParo, D., & Waldman, I. D. (2015). The oxytocin receptor gene (OXTR) is associated with autism spectrum disorder: A meta-analysis. Molecular Psychiatry, 20, 640646. doi:10.1038/mp.2014.77Google Scholar
Love, T. M. (2014). Oxytocin, motivation and the role of dopamine. Pharmacology, Biochemistry and Behavior, 119, 4960. doi:10.1016/j.pbb.2013.06.011Google Scholar
Love, T. M., Enoch, M. A., Hodgkinson, C. A., Pecina, M., Mickey, B., Koeppe, R. A., … Zubieta, J. K. (2012). Oxytocin gene polymorphisms influence human dopaminergic function in a sex-dependent manner. Biological Psychiatry, 72, 198206. doi:10.1016/j.biopsych.2012.01.033Google Scholar
McClelland, G. H., & Judd, C. M. (1993). Statistical difficulties of detecting interactions and moderator effects. Psychological Bulletin, 114, 376390.Google Scholar
McElhaney, K. B., Allen, J. P., Stephenson, J. C., & Hare, A. L. (2009). Attachment and autonomy during adolescence. In Lerner, R. M. & Steinberg, L. (Eds.), Handbook of adolescent psychology: Vol. 1. Individual bases of adolescent development (3rd ed., pp. 358403). Hoboken, NJ: Wiley.Google Scholar
McQuaid, R. J., McInnis, O. A., Paric, A., Al-Yawer, F., Matheson, K., & Anisman, H. (2016). Relations between plasma oxytocin and cortisol: The stress buffering role of social support. Neurobiology of Stress, 3, 5260. doi:10.1016/j.ynstr.2016.01.001Google Scholar
Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews: Neuroscience, 12, 524538. doi:10.1038/nrn3044Google Scholar
Mileva-Seitz, V., Steiner, M., Atkinson, L., Meaney, M. J., Levitan, R., Kennedy, J. L., … Fleming, A. S. (2013). Interaction between oxytocin genotypes and early experience predicts quality of mothering and postpartum mood. PlOS ONE, 8, e61443. doi:10.1371/journal.pone.0061443Google Scholar
Moffitt, T. E. (2005). The new look of behavioral genetics in developmental psychopathology: Gene-environment interplay in antisocial behaviors. Psychological Bulletin, 131, 533554. doi:10.1037/0033-2909.131.4.533Google Scholar
Nakagawa, S. (2004). A farewell to Bonferroni: The problems of low statistical power and publication bias. Behavioral Ecology, 15, 10441045.Google Scholar
Notzon, S., Domschke, K., Holitschke, K., Ziegler, C., Arolt, V., Pauli, P., … Zwanzger, P. (2016). Attachment style and oxytocin receptor gene variation interact in influencing social anxiety. World Journal of Biological Psychiatry, 17, 7683. doi:10.3109/15622975.2015.1091502Google Scholar
Olff, M., Frijling, J. L., Kubzansky, L. D., Bradley, B., Ellenbogen, M. A., Cardoso, C., … van Zuiden, M. (2013). The role of oxytocin in social bonding, stress regulation and mental health: An update on the moderating effects of context and interindividual differences. Psychoneuroendocrinology, 38, 18831894. doi:10.1016/j.psyneuen.2013.06.019Google Scholar
Olofsdotter, S., Sonnby, K., Vadlin, S., Furmark, T., & Nilsson, K. W. (2015). Assessing adolescent anxiety in general psychiatric care: Diagnostic accuracy of the Swedish Self-Report and Parent Versions of the Spence Children's Anxiety Scale. Assessment. Advance online publication. doi:10.1177/1073191115583858Google Scholar
Onodera, M., Ishitobi, Y., Tanaka, Y., Aizawa, S., Masuda, K., Inoue, A., … Akiyoshi, J. (2015). Genetic association of the oxytocin receptor genes with panic, major depressive disorder, and social anxiety disorder. Psychiatric Genetics, 25, 212. doi:10.1097/YPG.0000000000000096Google Scholar
Orgiles, M., Fernandez-Martinez, I., Guillen-Riquelme, A., Espada, J. P., & Essau, C. A. (2015). A systematic review of the factor structure and reliability of the Spence Children's Anxiety Scale. Journal of Affective Disorders, 190, 333340. doi:10.1016/j.jad.2015.09.055Google Scholar
Perneger, T. V. (1998). What's wrong with Bonferroni adjustments. British Medical Journal, 316, 12361238.Google Scholar
Pierrehumbert, B., Torrisi, R., Laufer, D., Halfon, O., Ansermet, F., & Beck Popovic, M. (2010). Oxytocin response to an experimental psychosocial challenge in adults exposed to traumatic experiences during childhood or adolescence. Neuroscience, 166, 168177. doi:10.1016/j.neuroscience.2009.12.016Google Scholar
Polanczyk, G. V., Salum, G. A., Sugaya, L. S., Caye, A., & Rohde, L. A. (2015). Annual Research Review: A meta-analysis of the worldwide prevalence of mental disorders in children and adolescents. Journal of Child Psychology and Psychiatry, 56, 345365. doi:10.1111/jcpp.12381Google Scholar
Powers, S. I., Welsh, D. P., & Wright, V. (1994). Adolescents’ affective experience of family behaviors: The role of subjective understanding. Journal of Research on Adolescence, 4, 585600.Google Scholar
Roisman, G. I., Newman, D. A., Fraley, R. C., Haltigan, J. D., Groh, A. M., & Haydon, K. C. (2012). Distinguishing differential susceptibility from diathesis–stress: Recommendations for evaluating interaction effects. Development and Psychopathology, 24, 389409. doi:10.1017/S0954579412000065Google Scholar
Rothman, K. J. (1990). No adjustments are needed for multiple comparisons. Epidemiology, 1, 4346.Google Scholar
Rutter, M. (1979). Protective factors in children's responses to stress and disadvantage. Annals of the Academy of Medicine, 8, 324338.Google Scholar
Salum, G. A., Desousa, D. A., do Rosario, M. C., Pine, D. S., & Manfro, G. G. (2013). Pediatric anxiety disorders: From neuroscience to evidence-based clinical practice. Revista Brasileira de Psiquiatria, 35(Suppl. 1), S03S21. doi:10.1590/1516-4446-2013-S108Google Scholar
Shaffer, D. R., & Kipp, K. (2014). Developmental psychology: Childhood and adolescence (9th ed.). Belmont, CA: Wadsworth Cengage Learning.Google Scholar
Shamay-Tsoory, S. G., & Abu-Akel, A. (2016). The social salience hypothesis of oxytocin. Biological Psychiatry, 79, 194202. doi:10.1016/j.biopsych.2015.07.020Google Scholar
Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: The NCBI database of genetic variation. Nucleic Acids Research, 29, 308311.Google Scholar
Siemsen, E., Roth, A., & Oliveira, P. (2010). Common method bias in regression models with linear, quadratic, and interaction effects. Organizational Research Methods, 13, 456476. doi:10.1177/1094428109351241Google Scholar
Skinner, E. A., Johnson, S., & Snyder, T. (2005). Six dimensions of parenting: A motivational model. Parenting, 5, 175235. doi:10.1207/s15327922par0502_3Google Scholar
Skinner, E. A., Wellborn, J. G., & Regan, C. (1986). The “Parents as Social Context Questionnaire” (PASCQ): Parent-and child reports of parent involvement, structure, and autonomy support (Tech. Rep.). Rochester, NY: University of Rochester.Google Scholar
Spence, S. H. (1997). Structure of anxiety symptoms among children: A confirmatory factor-analytic study. Journal of Abnormal Psychology, 106, 280297.Google Scholar
Strauss, J. S., Freeman, N. L., Shaikh, S. A., Vetró, Á., Kiss, E., Kapornai, K., … Kennedy, J. L. (2010). No association between oxytocin or prolactin gene variants and childhood-onset mood disorders. Psychoneuroendocrinology, 35, 14221428. doi:10.1016/j.psyneuen.2010.04.008Google Scholar
Tops, M., Van Peer, J. M., Korf, J., Wijers, A. A., & Tucker, D. M. (2007). Anxiety, cortisol, and attachment predict plasma oxytocin. Psychophysiology, 44, 444449. doi:10.1111/j.1469-8986.2007.00510.xGoogle Scholar
Tost, H., Kolachana, B., Hakimi, S., Lemaitre, H., Verchinski, B. A., Mattay, V. S., … Meyer-Lindenberg, A. (2010). A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proceedings of the National Academy of Sciences, 107, 1393613941. doi:10.1073/pnas.1003296107Google Scholar
Uzefovsky, F., Shalev, I., Israel, S., Edelman, S., Raz, Y., Mankuta, D., … Ebstein, R. P. (2015). Oxytocin receptor and vasopressin receptor 1a genes are respectively associated with emotional and cognitive empathy. Hormones and Behavior, 67, 6065. doi:10.1016/j.yhbeh.2014.11.007Google Scholar
Waite, P., Whittington, L., & Creswell, C. (2014). Parent-child interactions and adolescent anxiety: A systematic review. Psychopathology Review, 1, 5176. doi:10.5127/pr.033213Google Scholar
White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48.Google Scholar
Widaman, K. F., Helm, J. L., Castro-Schilo, L., Pluess, M., Stallings, M. C., & Belsky, J. (2012). Distinguishing ordinal and disordinal interactions. Psychological Methods, 17, 615622. doi:10.1037/a0030003Google Scholar
Wigton, R., Radua, J., Allen, P., Averbeck, B., Meyer-Lindenberg, A., McGuire, P., … Fusar-Poli, P. (2015). Neurophysiological effects of acute oxytocin administration: Systematic review and meta-analysis of placebo-controlled imaging studies. Journal of Psychiatry & Neuroscience, 40, E1E22. doi:10.1503/jpn.130289Google Scholar
Yi, N., Xu, S., Lou, X. Y., & Mallick, H. (2014). Multiple comparisons in genetic association studies: A hierarchical modeling approach. Statistical Applications in Genetics and Molecular Biology, 13, 3548. doi:10.1515/sagmb-2012-0040Google Scholar