Skip to main content Accessibility help
×
Home

Botulism: Cause, Effects, Diagnosis, Clinical and Laboratory Identification, and Treatment Modalities

  • Zygmunt F. Dembek, Leonard A. Smith and Janice M. Rusnak

Abstract

Botulism is a neuroparalytic disease caused by neurotoxins produced by the bacteria Clostridium botulinum. Botulinum neurotoxins (BoNTs) are among the most potent naturally occurring toxins and are a category A biological threat agent. The 7 toxin serotypes of BoNTs (serotypes A–G) have different toxicities, act through 3 different intracellular protein targets, and exhibit different durations of effect. Botulism may follow ingestion of food contaminated with BoNT, from toxin production of C botulinum present in the intestine or wounds, or from inhalation of aerosolized toxin. Intoxication classically presents as an acute, symmetrical, descending flaccid paralysis. Early diagnosis is important because antitoxin therapy is most effective when administered early. Confirmatory testing of botulism with BoNT assays or C botulinum cultures is time-consuming, and may be insensitive in the diagnosis of inhalational botulism and in as many as 32% of food-borne botulism cases. Therefore, the decision to initiate botulinum antitoxin therapy is primarily based on symptoms and physical examination findings that are consistent with botulism, with support of epidemiological history and electrophysiological testing. Modern clinical practice and antitoxin treatment has reduced botulism mortality rates from ∼60% to ≤10%. The pentavalent botulinum toxoid is an investigational product and has been used for more than 45 years in at-risk laboratory workers to protect against toxin serotypes A to E. Due to declining immunogenicity and potency of the pentavalent botulinum toxoid, novel vaccine candidates are being developed. (Disaster Med Public Health Preparedness. 2007;1:122–134)

Copyright

Corresponding author

Address correspondence and reprint requests to Dr Zygmunt Dembek, USAMRIID, 1425 Porter St, Ft Detrick, MD 21702(e-mail: zygmunt.dembek@det.amedd.army.mil).

References

Hide All
1.Nishiura, H.Incubation period as a clinical predictor of botulism: analysis of previous izushi-borne outbreaks in Hokkaido, Japan, from 1951 to 1965. Epidemiol Infect. 2007;135:126130.
2.Shapiro, RL, Hatheway, C, Swerdlow, DL.Botulism in the United States: a clinical and epidemiological review. Ann Intern Med. 1998;129:221228.
3.White, SM.Chemical and biological weapons. Implications for anaesthesia and intensive care. Br J Anaesth. 2002;89:306324.
4.Hill, EV Botulism. Summary Report on B.W. Investigations. Memorandum to Alden C. Waitt, Chief Chemical Corps, United States Army, December 12, 1947; tab D. Archived at the US Library of Congress. Washington, DC: 1947.
5. Cochrane RC. Biological Warfare Research in the United States. In: History of the Chemical Warfare Service in World War II (01 July 1940–15 August 1945), Vol 2. Historical Section, Plans, Training and Intelligence Division, Office of Chief, Chemical Corps, US Department of the Army. Unclassified. Archived at the US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD; 1947.
6.Bernstein, BJ.The birth of the US biological-warfare program. Sci Am. 1987;256:116121.
7.Bernstein, BJOrigins of the U.S. biological warfare program. Wright S. Preventing a Biological Arms Race. Cambridge, MA: MIT Press; 1990: 925.
8.Franz, DR, Parrott, CD, Takafuji, ET. The U.S. biological warfare and biological defense programs. Slidell FR, Takafuji ET, Franz DR. Textbook of Military Medicine, Part I: Warfare, Weaponry, and Then Casualty: Medical Aspects of Chemical and Biological Warfare. Washington, DC: Borden Institute, Walter Reed Army Medical Center; 1997: 425436.
9. Biological and Toxin Weapons Convention Web site. http://www.opbw.org. Accessed June 14, 2006.
10.Tenth Report of the Executive Chairman of the Special Commission Established by the Secretary-General Pursuant to Paragraph 9. 10(b) (I) of Security Council Resolution 687 (1991), and Paragraph 3 of Resolution 699 (1991) on the Activities of the Special Commission. S/1995/1038. New York: United Nations Security Council; 1995.
11.Bozheyeva, G, Kunakbayev, Y, Yeleukenov, D.Former Soviet Biological Weapons Facilities in Kazakhstan: Past, Present and Future. Occasional paper No. 1. Monterey, CA: Center for Nonproliferation Studies, Monterey Institute of International Studies; 1999: 120.
12. Miller J. At bleak Asian site, killer germs survive. New York Times. June 2, 1999: A1, A10.
13.Alibek, K, Handleman, S.Biohazard. New York: Random House; 1999.
14. 1998 Congressional Hearings. Statement by Dr Kenneth Alibek before the Joint Economic Committee, US Congress, Wednesday, May 20, 1998. Terrorist and Intelligence Operations: Potential Impact on the US Economy. GlobalSecurity.org Web site. http://www.globalsecurity.org/intell/library/congress/1998_hr/alibek.htm. Accessed October 10, 2007.
15. Zilinskas RA. Iraq’s biological weapons: the past and future? JAMA. 1997;278:418–424.
16.Blix, H.Disarming Iraq. New York: Pantheon Books; 2004.
17.Van Ermengen, E.Ueber einen neuren anaeroben Bacillus und seine beziehungen zum botilismus. Z Hyg Infektionskrankh. 1897;26:156.
18.Sobel, J, Tucker, N, Sulka, A, McLaughlin, J, Maslanka, S.Foodborne botulism in the United States, 1900-2000. Emerg Infect Dis. 2004;10:16061611.
19.Smart, JL, Jones, TO, Clegg, FG, McMurray, MJ.Poultry waste associated type C botulism in cattle. Epidemiol Infect. 1987;98:7379.
20.Whitlock, RH, Buckley, C.Botulism. Vet Clin N Am Eq Proc. 1997;13:107128.
21.McLaughlin, JB, Sobel, J, Lynn, T, Funk, E, Middaugh, JP.Botulism type E outbreak associated with eating a beached whale, Alaska. Emerg Infect Dis. 2004;10:16851687.
22.Sugishima, M.Aum Shinrikyo and the Japanese law on bioterrorism. Prehosp Disaster Med. 2003;18:179183.
23.Leitenberg, M.Aum Shinrikyo’s efforts to produce biological weapons: a case study in the serial propagation of misinformation. Terrorism Political Violence. 1999;11:149158.
24. Revkin AC. Arrests reveal threat of biological weapons. Published February 21, 1998. New York Times. http://query.nytimes.com/gst/fullpage.html?res=9E0DE5D71E3FF932A15751C0A96E958260. Accessed October 11, 2007.
25.Torok, TJ, Tauxe, RV, Wise, RP, et alA large community outbreak of salmonellosis caused by intentional contamination of restaurant salad bars. JAMA. 1997;278:389395.
26.Carus, WS. The Rajneeshees (1984). Tucker JB. Toxic Terror: Assessing Terrorist Use of Chemical and Biological Weapons. Cambridge, MA: MIT Press; 2000: 115137.
27.Miller, J, Engelberg, S, Broad, W.Germs: Biological Weapons and America’s Secret War. New York: Simon & Schuster; 2001: 1533.
28.Smith, LABacterial protein toxins as biological weapons.Alouf JE, Popoff MR. The Comprehensive Sourcebook of Bacterial Protein Toxins. London: Academic Press; 2006: 10191030.
29.Hennessy, TW, Hedberg, CW, Slutsker, L, et alA national outbreak of Salmonella enteritidis from ice cream. N Engl J Med. 1996;334:12811296.
30.Ryan, CA, Nickels, MK, Hargrett-Bean, NT, et alMassive outbreak of antimicrobial-resistant salmonellosis traced to pasteurized milk. JAMA. 1987;258:32693274.
31.Wein, LM, Liu, Y.Analyzing a bioterrorist attack on the food supply: the case of botulinum toxin in milk. Proc Natl Acad Sci U S A. 2005;102:99849989.
32.Alberts, B.Modeling attacks on the food supply. Proc Natl Acad Sci U S A. 2005;102:97379738.
33.Dembek, ZFModeling for bioterrorism incidents.Lindler LE, Lebeda FJ, Korch, GW. Biological Weapons Defense: Infectious Disease and Counterbioterrorism. Totowa, NJ: Humana Press; 2005: 2340.
34.Centers for Disease Control and Prevention Outbreak of gastroenteritis associated with an interactive water fountain at a beachside park–Florida, 1999. MMWR. 2000;49:565568.
35.Ward, BQ, Carroll, BJ, Garrett, ES, Reese, GB.Survey of the U.S. Gulf Coast for the presence of Clostridium botulinum. Appl Microbiol. 1967;15:629–36.
36.Smith, LDS.The occurrence of Clostridium botulinum and Clostridium tetani in the soil of the United States. Health Lab Sci. 1978;15:7480.
37.Shone, CC, Tranter, HS. Growth of Clostridia and preparation of their neurotoxins. Montecucco C. Current Topics in Microbiology: Clostridial Neurotoxins: The Molecular Pathogenesis of Tetanus and Botulism. 195 Berlin: Springer-Verlag; 1995: 143160.
38.Arnon, SS, Schechter, R, Inglesby, TV, et alBotulinum toxin as a biological weapon. Medical and public health management. JAMA. 2001;285:10591070.
39.Hatheway, CLClostridium botulinum and other clostridia that produce botulinum neurotoxins. Hauschild AHW, Dodds KL. Clostridium botulinum: Ecology and Control in Foods. New York: Marcel Dekker; 1992: 310.
40.Halpern, JL, Smith, LA, Seamon, KB, Groover, KA, Habig, WH.Sequence homology between tetanus and botulinum toxin injections for the treatment of spasmodic torticollis. Neurology. 1989;40:12131218.
41.Hall, JD, McCroskey, LM, Pincomb, BJ, Hatheway, CL.Isolation of an organism resembling Clostridium baratii which produces type F botulinal toxin from an infant with botulism. J Clin Microbiol. 1985;21:654655.
42.Aureli, P, Fenicia, L, Pasolini, B, Gianfranceschi, M, McCroskey, LM, Hatheway, CL.Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy. J Infect Dis. 1986;154:207211.
43.Barash, JR, Tang, TWH, Arnon, SS.First case of infant botulism caused by Clostridium baratii type F in California. J Clin Microbiol. 2005;43:42804282.
44.Sonnabend, O, Sonnabend, O, Heinzle, R, Sigrist, T, Dirnhofer, R, Krech, U.Isolation of Clostridium botulinum type G and identification of type G botulinal toxin in humans: report of five sudden unexpected deaths. J Infect Dis. 1981;143:2227.
45.Middlebrook, JL, Franz, DR. Botulinum toxins.Slidell FR, Takafuji ET, Franz DR. Textbook of Military Medicine, Part I: Warfare, Weaponry, and Then Casualty: Medical Aspects of Chemical and Biological Warfare. Washington, DC: Borden Institute, Walter Reed Army Medical Center; 1997: 643654.
46.Aktories, K, Barth, H.Clostridium botulinum C2 toxin—new insights into the cellular up-take of the actin-ADP-ribosylating toxin. Int J Med Microbiol. 2004;293:557–64.
47.Barth, H, Aktories, K, Popoff, MR, Stiles, BG.Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev. 2004;68:373402.
48.Ohishi, I.Oral toxicities of Clostridium botulinum type A and B toxins from different strains. Infect Immun. 1984;43:487490.
49.Scott, AB, Suzuki, D.Systemic toxicity of botulinum toxin by intramuscular injection in the monkey. Mov Disord. 1988;3:333335.
50.Franz, DR, Pitt, LM, Clayton, MA, Hanes, MA, Rose, KJ. Efficacy of prophylactic and therapeutic administration of antitoxin for inhalation botulism.DasGupta BR. Botulinum and Tetanus Neurotoxins: Neurotransmission and Biomedical Aspects. New York: Plenum Press; 1993: 473476.
51.Woodruff, BA, Griffin, AM, McCroskey, LM, et alClinical and laboratory comparison of botulism from toxin types A, B, and E in the United States, 1975-1988. J Infect Dis. 1992;166:12811286.
52.Swaminathan, S, Eswaramoorthy, S.Structural analysis of the catalytic and biding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol. 2000;7:696699.
53.Lamanna, C.The most poisonous poison. Science. 1959;130:763772.
54.Fu, FN, Lomneth, RB, Cai, SS, et alRole of zinc in the structure and toxic activity of botulinum neurotoxin. Biochemistry. 1998;37:52675278.
55.Gill, DM.Bacterial toxins: a table of lethal amounts. Microbiol Rev. 1982;46:8694.
56.De Paiva, A, Meunier, FA, Molgo, J, Aoki, KR, Dolly, JO.Functional repair of motor endplates after botulinum neurotoxin type A poisoning: biphasic switch of synaptic activity between nerve sprouts and their parent terminals. Proc Natl Acad Sci U S A. 1999;96:32003205.
57.Foran, P, Mohammed, N, Lisk, G, et alEvaluation of the therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared to the long-lasting type A: basis for distinct durations of inhibition of exocytosis in central neurons. J Biol Chem. 2003;278:13631371.
58.Aoki, KR, Guyer, B.Botulinum toxin type A and other botulinum toxin serotypes: a comparative review of biochemical and pharmacological actions. Eur J Neurol. 2001;8 (Suppl 5):2129.
59.Simpson, LL.Identification of the major steps in botulinum toxin action. Ann Rev Pharmacol Toxicol. 2004;44:167193.
60. Pellizzari R, Rossetto O, Washbourne P, Tonello F, Nocotera PL, Monteccuco C. In vitro biological activity and toxicity of tetanus and botulinum neurotoxins. Toxicol Lett. 1998;102–103:191–197.
61.Habermann, E. Clostridial neurotoxins and the central nervous system: functional studies on isolated preparations.Simpson LL. Botulinum Neurotoxin and Tetanus Toxin. New York: Academic Press; 1989: 5367.
62.Rossetto, O, deBernard, M, Pellizzari, R, et alBacterial toxins with intracellular protease activity. Clin Chim Acta. 2000;291:189199.
63.Tacket, CO, Shandera, WX, Mann, JM, et alEquine antitoxin use and other factors that predict outcome in type A foodborne botulism. Am J Med. 1984;76:794798.
64.Hughes, JM, Blumenthal, JR, Merson, MH, Lombard, GL, JrDowell, VR, Gangarosa, EJ.Clinical features of types A and B food-borne botulism. Ann Intern Med. 1981;95:442445.
65.Maroon, JC.Late effects of botulinum intoxication. JAMA. 1977;238:129.
66.Mann, JM, Martin, S, Hoffman, R, Marrazzo, S.Patient recovery from type A botulism: morbidity assessment following a large outbreak. Am J Public Health. 1981;71:266269.
67.Varma, JK, Katstadze, G, Moiscrafishvili, M, et alSigns and symptoms predictive of death in patients with foodborne botulism–Republic of Georgia, 1989–2002. Clin Infect Dis. 2004;39:357–62.
68.Holzer, E.Botulism caused by inhalation. Med Klin. 1962;41:17351740.
69.Werner, SB, Passaro, D, McGee, J, Schechter, R, Vugia, DJ.Wound botulism in California, 1951–1998: recent epidemic in heroin injectors. Clin Infect Dis. 2000;31:10181024.
70.Maselli, RA, Bakshi, N.American Association of Electrodiagnostic Medicine case report 16: botulism. Muscle Nerve. 2000;23:11371144.
71.Cherington, M.Clinical spectrum of botulism. Muscle Nerve. 1998;21:701710.
72.Padua, L, Aprile, I, Monaco, ML, et alNeurophysiological assessment in the diagnosis of botulism: usefulness of single-fiber EMG. Muscle Nerve. 1999;22:13881392.
73.Franz, DR, Jahrling, PB, Friedlander, AM, et alClinical recognition and management of patients exposed to biological warfare agents. JAMA. 1997;278:399411.
74.Heymann, DL.Control of Communicable Diseases in Man. 18th ed. Washington, DC: American Public Health Association; 2004: 6975.
75.Chao, HY, Wang, YC, Tang, SS, Liu, HW.A highly sensitive immuno-polymerase chain reaction assay for Clostridium botulinum neurotoxin type A. Toxicon. 2004;43:2734.
76.Akbulut, D, Grant, KA, McLauchlin, J.Improvement in laboratory diagnosis of wound botulism and tetanus among injecting illicit-drug users by use of real-time PCR assays for neurotoxin gene fragments. J Clin Microbiol. 2005;43:43424348.
77.Kongsaengdao, S, Samintarapanya, K, Rusmeechan, S, et alAn outbreak of botulism in Thailand: clinical manifestations and management of severe respiratory failure. Clin Infect Dis. 2006;43:12471256.
78.Marks, JD.Medical aspects of biologic toxins. Anesthesiol Clin N Am. 2004;22:509532.
79.Black, TS. Clostridium botulinum (botulism).Mandell GL, Bennett JE, Dolin R. Principles and Practice of Infectious Diseases. Philadelphia: Churchill Livingston; 2000: 25432548.
80.Gottlieb, SL, Kretsinger, K, Tarkhashvili, N, et alLong-term outcomes of 217 botulism cases in the Republic of Georgia. Clin Infect Dis. 2007;45:174180.
81.Iida, H.Specific antitoxin therapy in type E botulism. Jpn J Med Sci Biol. 1963;16:311313.
82.Infant botulism–New York City, 2001–2002. MMWR. 2003;52:2124.
83.Fox, CK, Keet, CA, Strober, JB.Recent advances in infant botulism. Pediatr Neurol. 2005;32:149154.
84.Arnon, SS. Infant botulism.Feigin RD, Cheny JD. Textbook of Pediatric Infectious Disease, 4th ed. Philadelphia: WB Saunders; 1998: 17581766.
85. Advanced topics on medical defense against biological agents: botulinum toxin. Christian E. Sandrock interview. Satellite telecast September 20, 2006. Course #21106 archived on http://www.swankhealth.com. Accessed June 29, 2007.
86. Advanced topics on medical defense against biological agents: botulinum toxin, Steven M. Marcus interview. Satellite telecast September 20, 2006. http://www.swankhealth.com/botox. Accessed June 29, 2007.
87. Allergan’s BOTOX not cause of botulism in Florida patients. Medical News Today. Published December 13, 2004. http://www.medicalnewstoday.com/medicalnews.php?newsid=17720. Accessed June 29, 2007.
88. Reports blame Florida botulism cases on misused toxin. Center for Infectious Disease Research and Policy, University of Minnesota. Published December 15, 2004. http://www.cidrap.umn.edu/cidrap/content/bt/botulism/news/dec1504botulism.html. Accessed June 29, 2007.
89.Chertow, DS, Tan, ET, Maslanka, SE, et alBotulism in 4 adults following cosmetic injections with an unlicensed, highly concentrated botulinum preparation. JAMA. 2006;296:24762479.
90.Souyah, N, Karim, H, Kamin, SS, McArdle, J, Marcus, S.Severe botulism after focal injection of botulinum toxin. Neurology. 2006;67:18551856.
91.Botulism from home-canned bamboo shoots–Nan province, Thailand, March 2006. MMWR. 2006;55:389392.
92.Wongtanate, M, Sucharitchan, N, Tantisiriwit, K, et alSigns and symptoms predictive of respiratory failure in patients with foodborne botulism in Thailand. Am J Trop Med Hyg. 2007;77:386389.
93.Ungchusak, K, Chunsuttiwat, S, Braden, CR, et alThe need for global planned mobilization of essential medicine: lessons from a massive Thai botulism outbreak. Bull WHO. 2007;85:238240.
94. Evaluation of Safety and Immunogenicity of Pentavalent Botulinum Toxoid (A–E) Administered to Healthy Volunteers, Log A-9241, US Army, Office of the Surgeon General, February 2001.
95.Cardella, MA, Wright, GG.Specifications for Manufacture of Botulism Toxoids, Adsorbed, Pentavalent, Types ABCDE (Technical Study 46). Ft Detrick, MD: Medical Investigation Division, US Army Biological Laboratories; 1964.
96.Rusnak, JM, Kortepeter, MG, Hawley, RJ, Anderson, AO, Boudreau, E, Eitzen, E.Risk of occupationally-acquired illnesses from biological threat agents in unvaccinated laboratory workers. Biosecurity Bioterrorism. 2004;2:281293.
97.Siegel, LS.Human Immune Response to Botulinum Pentavalent (ABCDE) Toxoid Determined by a Neutralization Test and by an Enzyme-Linked Immunosorbent Assay. J Clin Microbiol. 1988;26:23512356.
98. Smith LA, Rusnak JM. Botulinum neurotoxin vaccines: past, present, and future. Crit Rev Immunol. In press.
99. Brown JE, Parker GW, Pitt LM, et al. Protective efficacy of monkey pentavalent botulinum toxoid vaccine on an abbreviated immunization schedule [abstract]. ASM Int Conf Molec Genet Pathogen Clostridia. Rio Rico, AZ, January 11–14, 1995.
100.Fiock, MA, Cardella, MA, Gearinger, NF.Studies on immunity to toxins of Clostridium botulinum. IX. Immunologic response of man to purified A,B,C,D, and E botulinum toxoid. J Immunol. 1963;90:967–702.
101. Rusnak JM, Smith L, Boudreau E, et al. Decreased immunogenicity of botulinum Pentavalent Toxoid to Toxins B and E [abstract S10]. 6th Annual Conference on Vaccine Research. May 5–7, 2003, Arlington, VA.
102. Battelle Memorial Institute, Chemical Warfare/Chemical and Biological Defense Information Analysis Center. Evaluation of Safety and Immunogenicity of Pentavalent Botulinum Development of Safe and Effective Products to Exposure to Biological Chemical Warfare Agents; 2001.
103. Battelle Memorial Institute, Chemical Warfare/Chemical and Biological Defense Information Analysis Center. Evaluation of Safety and Immunogenicity of Pentavalent Botulinum Toxoid (A–E) Administered to Healthy Volunteers–Continuation of Study for Determination of Booster Vaccination Interval; 2002.
104. Evaluation of Safety and Immunogenicity of Pentavalent Botulinum Toxoid (A–E) Administered to Healthy Volunteers, Log A-9241, US Army, Office of the Surgeon General; 2001.
105.Serologic Response to Anthrax and Botulinum Vaccines. Final Study Report, Protocol FY 92-5, M 109, Log A-5747. US Army, Office of the Surgeon General; 1997.
106.Gelzleichter, TR, Myers, MA, Menton, RG, Niemuth, NA, Matthews, MC, Langford, MJ.Protection against botulinum toxins provided by passive immunization with botulinum human immune globulin: evaluation using an inhalation model. J Appl Toxicol. 1999;19:S35S38.
107.Edelman, R, Wasserman, SS, Bodison, SA, Perry, JG, O’Donnoghue, M, DeTolla, LJ.Phase II safety and immunogenicity study of type F botulinum toxoid in adult volunteers. Vaccine. 2003;21:4335–47.
108.Torii, Y, Tokumaru, Y, Kawaguchi, S, et alProduction and immunogenic efficacy of botulinum tetravalent (A, B, E, F) toxoid. Vaccine. 2002;20:25562561.
109.Holley, JL, Elmore, M, Mauchline, M, Minton, N, Titball, RW.Cloning expression and evaluation of a recombinant sub-unit vaccine against Clostridium botulinum type F toxin. Vaccine. 2000;19:288292.
110.Byrne, MP, Smith, TJ, Montgomery, VA, Smith, LA.Purification, potency, and efficacy of the botulinum neurotoxin type A binding domain from Pichia pastoris as a recombinant vaccine candidate. Infect Immun. 1998;66:48174822.
111.Clayton, J, Middlebrook, FL.Vaccination of mice with DNA encoding a large fragment of botulinum neurotoxin serotype A. Vaccine. 2000;18:18551862.
112.Shyu, RH, Shaio, MF, Tang, SS, et alDNA vaccination using the fragment C of botulinum neurotoxin type A provided protective immunity in mice. J Biomed Sci. 2000;7:5157.
113.Potter, KJ, Bevins, MA, Vassilieva, EV, et alProduction and purification of the heavy-chain fragment C of botulinum neurotoxin, serotype B, expressed in the methylotrophic yeast, Picia pastoris. Protein Exp Purif. 1998;13:357365.
114.Kyatkin, N, Maksymowych, AB, Simpson, LL.Induction of an immune response by oral administration of recombinant botulinum toxin. Infect Immun. 1997;65:45864591.
115.Foynes, S, Holley, JL, Garmory, HS, Titball, RW, Fairweather, NF.Vaccination against type F botulinum toxin using attenuated Salmonella enterica var typhimurium strains expressing the BoNT/F hc fragment. Vaccine. 2003;21:10521059.
116.Smith, LA, Jensen, JM, Montgomery, VA, Brown, DR, Ahmed, SA, Smith, TJ.Roads from vaccines to therapies. Mov Disord. 2004;19:S48S52.
117.Middlebrook, JL.Protection strategies against botulinum toxin. Adv Exp Med Biol. 1995;383:9398.
118.Park, JB, Simpson, LL.Progress toward development of an inhalation vaccine against botulinum toxin. Expert Rev Vaccines. 2004;3:477487.
119.Park, JB, Simpson, LL.Inhalational poisoning by botulinum toxin and inhalation vaccination with its heavy-chain component. Infect Immun. 2003;71:11471154.
120.Byrne, MP, Smith, LA.Development of vaccines for prevention of botulism. Biochimie. 2000;82:955–66.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed