Skip to main content Accessibility help
×
Home
Hostname: page-component-5959bf8d4d-dtbwl Total loading time: 0.576 Render date: 2022-12-09T23:56:47.591Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Histological characteristics of the vertebral intercentra of Metoposaurus diagnosticus (Temnospondyli) from the Upper Triassic of Krasiejów (Upper Silesia, Poland)

Published online by Cambridge University Press:  07 October 2013

D. Konietzko-Meier
Affiliation:
Steinmann Institute, Division of Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany. Email: Martin.Sander@uni-bonn.de Department of Biosystematics, University of Opole, Oleska 22, 45-052 Opole, Poland. Email: Dorota.Majer@uni.opole.pl; abodzioch@uni.opole.pl
A. Bodzioch
Affiliation:
Department of Biosystematics, University of Opole, Oleska 22, 45-052 Opole, Poland. Email: Dorota.Majer@uni.opole.pl; abodzioch@uni.opole.pl
P. M. Sander
Affiliation:
Steinmann Institute, Division of Paleontology, University of Bonn, Nussallee 8, 53115 Bonn, Germany. Email: Martin.Sander@uni-bonn.de

Abstract

Osteohistological characteristics of the large temnospondyl amphibian Metoposaurus diagnosticus from the Upper Triassic of Poland (Krasiejów locality) were determined using vertebral intercentra thin-sections from different regions and growth stages. The intercentra showed a trabecular structure in both the endochondral and periosteal domains. Endochondral ossification developed first, and the primary bone occurs near the periphery with a higher degree of remodelling in the centre. Periosteal bone deposition begins later; first on the ventral side, continuing laterally and finally onto the dorsal side. Periosteal growth rate was initially very rapid, and then subsequently decreased in rate. In all sections, numerous remains of calcified cartilage are visible, which may indicate a juvenile, paedomorphic or plesiomorphic character. The four histologic ontogenetic stages (HOS) of sampled vertebrae were determined based on growth marks. Most of the sampled bones belong to juvenile individuals (HOS 1 to 3), apart from one atlas and the largest anterior dorsal intercentrum, which represent the oldest described stage (HOS 4). Sharpey's fibres are preserved in ventro-lateral cortical regions, around parapophyses and on the posterior side of the neural arch.

Type
Articles
Copyright
Copyright © The Royal Society of Edinburgh 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

6. References

Amprino, R. 1947. La structure du tissu osseux envisagée comme expression de differences dans la vitesse de l'acroissement. Archives de Biologie 58, 315–30.Google Scholar
Bianco, P., Descalzi Cancedda, F., Riminucci, M. & Cancedda, R. 1998. Bone formation via cartilage models: the ‘borderline’ chondrocyte. Matrix Biology 17 (3), 185–92.CrossRefGoogle ScholarPubMed
Boy, J. A. 1974. Die Larven der rhachitomen Amphibien (Amphibia, Temnospondyli; Karbon-Trias). Paläontologische Zeitschrift 48, 236–48.CrossRefGoogle Scholar
Boy, J. A. 1990. Über einige Vertreter der Eryopoidea (Amphibia: Temnospondyli) aus dem europäischen Rotliegend (?höchstes Karbon-Perm) 3. Onchiodon. Paläontologische Zeitschrift 64 (3/4), 287312.CrossRefGoogle Scholar
Boy, J. A. 1995. Über die Micromelerpetontidae (Amphibia, Temnospondyli). 1. Morphologie und Palaoökologie des Micromelerpeton credneri (Unter-Perm: SW Deutschland). Paläontologische Zeitschrift 69 (3/4), 429–57.CrossRefGoogle Scholar
Buffrénil, V. de, Sire, J–Y. & Schoevaert, D. 1986. Comparaison de la structure et du volume squelettiques entre un delphinidé (Delphinus delphi L.) et un mammifère terrestre (Panthera leo L.). Canadian Journal of Zoology 64 (8), 1750–56.CrossRefGoogle Scholar
Cancedda, R., DescalziCancedda, F. Cancedda, F. & Castagnola, P. 1995. Chondrocyte differentiation. International Review of Cytology 159, 265358.CrossRefGoogle ScholarPubMed
Carroll, R. L., Kuntz, A. & Albright, K. 1999. Vertebral development and amphibian evolution. Evolution and Development 1 (1), 3648.Google ScholarPubMed
Castanet, J., Francillon-Vieillot, H., Meunier, F.-J. & Ricqlès, A. de. 1993. Bone and individual ageing. In Hall, B. K. (ed.) Bone, 245–83. Boca Raton, Florida: CRC Press.Google ScholarPubMed
Chinsamy, A., & Raath, M. A. 1992. Preparation of bone for histological study. Palaeontogia africana 29, 3944.Google Scholar
Chinsamy-Turan, A. 2005. The Microstructure of Dinosaur Bone: Deciphering Biology with Fine-scale Techniques, 1195. Baltimore: Johns Hopkins University Press.Google Scholar
Damiani, R. J. 2000. Bone histology of some Australian Triassic temnospondyl amphibians: preliminary data. Modern Geology 24, 109–24.Google Scholar
Dutuit, J. M. 1976. Introduction à l'étude paléontologique du Trias Continental Marocain. Description de premiers Stégocéphales recueillis dans le Couloir d'Argana (Atlas Occidental). Mémoires du Muséum National d'Histoire Naturelle Paris 36, 1253.Google Scholar
Dzik, J., Sulej, T., Kaim, A. & Niedźwiedzki, R. 2000. Późnotriasowe cmentarzysko kręgowców lądowych w Krasiejowie na Śląsku Opolskim. Przegląd Geologiczny 48, 226–35.Google Scholar
Dzik, J. & Sulej, T. 2007. A review of the early Late Triassic Krasiejów biota from Silesia, Poland. Palaeontologia Polonica 64, 327.Google Scholar
Enlow, D. H. & Brown, S. O. 1956. A comparative histological study of fossil and recent bone tissues. I. Texas Journal of Science 8, 405–43.Google Scholar
Erickson, G. M. 2005. Assessing dinosaur growth patterns: a microscopic revolution. Trends in Ecology and Evolution 20 (12), 677–84.CrossRefGoogle ScholarPubMed
Erlebacher, A., Filvaroff, E. H., Gitelman, S. E. & Derynck, R. 1995. Toward a molecular understanding of skeletal development. Cell 80 (3), 371–78.CrossRefGoogle Scholar
Francillon-Vieillot, H., de Buffrénil, V., Castanet, J., Géraudie, J., Meunier, F.-J., Sire, J.-Y., Zylberberg, L. & Ricqlès, A. de. 1990. Microstructure and mineralization of vertebrate skeletal tissues. In Carter, J. G. (ed.) Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends I, 471530. New York: Van Nostrand Reinhold.Google Scholar
Fröbisch, N. B., Carroll, R. L. & Schoch, R. R. 2007. Limb ossification in the Paleozoic branchiosaurid Apateon (Temnospondyli) and the early evolution of preaxial dominance in tetrapod limb development. Evolution & Development 9 (1), 6975.CrossRefGoogle ScholarPubMed
Fröbisch, N. B., Olori, J. C., Schoch, R. R. & Witzmann, F. 2010. Amphibian development in the fossil record. Seminars in Cell and Developmental Biology 21 (4), 424–31.CrossRefGoogle ScholarPubMed
Gross, W. 1934. Die Typen des mikroskopischen Knochenbaues bei fossilen Stegocephalen und Reptilien. Zeitschrift für Anatomie und Entwicklungsgeschichte 203, 731–64.CrossRefGoogle Scholar
Hunziker, E. B. 1994. Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microscopy Research and Technique 28 (6), 505–19.CrossRefGoogle ScholarPubMed
Klein, N. & Sander, M. 2008. Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology 34 (2), 247–63.CrossRefGoogle Scholar
Konietzko-Meier, D. 2011. Seasonal-burrowing mode of life of Metoposaurus diagnosticus krasiejowensis (Amphibia, Temnospondyli) on the basis of osteohistological data. I International Symposium on Paleohistology. Paleontologia i Evolució 1, 43.Google Scholar
Konietzko-Meier, D. & Klein, N. 2013. Unique growth pattern of Metoposaurus diagnosticus krasiejowensis (Amphibia, Temnospondyli) from the Upper Triassic of Krasiejów, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 370, 145–57.CrossRefGoogle Scholar
Margerie, E. de, Cubo, J. & Castanet, J. 2002. Bone typology and growth rate: testing and quantifying ‘Amprino's rule’ in the mallard (Anas platyrhynchos). Comptes Rendus Biologies 325 (3), 221–30.CrossRefGoogle Scholar
Mukherjee, D., Ray, S. & Sengupta, D. P. 2010. Preliminary observations on the bone microstructure, growth patterns, and life habits of some Triassic temnospondyls from India. Journal of Vertebrate Paleontology 30 (1), 7893.CrossRefGoogle Scholar
Pawley, K. 2006. The Postcranial Skeleton of Temnospondyls (Tetrapoda, Temnospondyli). PhD Thesis, La Trobe University, Melbourne, Australia. 422 pp.Google Scholar
Pawley, K. & Warren, A. A. 2004. Immaturity vs. paedomorphosis: A rhinesuchid stereospondyls postcranium from the Upper Permian of South Africa. Paleontologica Africana 40, 110.Google Scholar
Ray, S., Mukherjee, D. & Bandyopadhyay, S. 2009. Growth patterns of fossil vertebrates as deduced from bone microstructure: case studies from India. Journal of Biosciences 34 (5), 661–72.CrossRefGoogle ScholarPubMed
Ricqlès, A. de. 1975. Quelques remarques paléo–histologiques sur le problème de la néoténie chez les stégocéphales. Colloques Internationaux du Centre National de la Recherche Scientifique 218, 351–63.Google Scholar
Ricqlès, A. de. 1976. Recherches paléohistologiques sur le os long des tétrapodes VII. Sur la classification, la signification fonctionnelle et l'histoire des tissus osseux des tétrapodes (Deuxième partie). Annales de Paléontologie (Vértébres) 62, 71126.Google Scholar
Ricqlès, A. de. 1978. Recherches paléohistologiques sur l'os long des tétrapodes VII. Sur la classification, la signification fonctionnelle et l'histoire des tissus osseux des tétrapodes (Deuxième partie). Annales de Paléontologie (Vértébres) 64, 153–84.Google Scholar
Ricqlès, A. de. 1979. Relations entre structures histologiques, ontogenèse, strategies démographiques et modalités évolutives: le cas des reptiles captorhinomorphes et des stégocéphales temnospondyles. Comptes Rendus de l'Académie des Sciences Paris 288, 1147–50.Google Scholar
Ricqlès, A. de. 1992. Paleoherpetology now: a point of view. In: Adler, K. (ed.) Herpetology: current research on the biology of amphibians and reptiles. Proceedings of the First World Congress of Herpetology, 97120. Oxford, Ohio: Society for the Study of Amphibians and Reptiles.Google Scholar
Ricqlès, A. de., Castanet, J & Francillon–Vieillot, H. 2004. The “message” of bone tissue in paleoherpetology. Italian Journal of Zoology 1 (71), 312.CrossRefGoogle Scholar
Romer, A. S. 1939. Notes on branchiosaurs. American Journal of Science 237, 748–61.CrossRefGoogle Scholar
Romer, A. S. 1997. Osteology of the Reptiles. Reprint edition. Malabar, Florida: Krieger Publishing Company. 722 pp.Google Scholar
Sanchez, S., Klembara, J., Castanet, J. & Steyer, J. S. 2008. Salamander-like development in seymouriamorph revealed by palaeohistology. Biology Letters 4 (4), 411–14.CrossRefGoogle ScholarPubMed
Sanchez, S., Germain, D., Ricqlès, A. de, Abourachid, A., Goussard, F. & Tafforeau, P. 2010a. Limb–bone histology of temnospondyls: implications for understanding the diversification of palaeoecologies and patterns of locomotion of Permo–Triassic tetrapods. Journal of Evolutionary Biology 3 (10), 2076–90.CrossRefGoogle Scholar
Sanchez, S., Ricqlès, A. de, Schoch, R. R. & Steyer, J. S. 2010b. Developmental plasticity of limb bone microstructural organization in Apateon: histological evidence of paedomorphic conditions in branchiosaurs. Evolution and Development 12 (3), 315–28.CrossRefGoogle ScholarPubMed
Sanchez, S., Steyer, J. S., Schoch, R. R. & Ricqlès, A. de. 2010c. Palaeoecological and palaeoenvironmental influences revealed by long-bone palaeohistology: the example of the Permian branchiosaurid Apateon. Geological Society, London, Special Publications 339, 139–49. Bath, UK: Geological Society Publishing House.CrossRefGoogle Scholar
Sander, P. M., Klein, N., Stein, K. & Wings, O. 2011. Sauropod bone histology and its implications for sauropod biology. In Klein, N., K. Remes, K., Gee, C. T. & Sander, P. M. (eds) Biology of the Sauropod Dinosaurs: Understanding the Life of Giants. Life of the Past (series ed. Farlow, J.), 276302. Bloomington: Indiana University Press.Google Scholar
Schoch, R. R. 2003. The early larval ontogeny of the Permo-Carboniferous temnospondyl Sclerocephalus. Palaeontology 46 (5), 1055–72.CrossRefGoogle Scholar
Schoch, R. R. 2004. Skeletal formation in the Branchiosauridae: a case study in comparing ontogenetic trajectories. Journal of Vertebrate Paleontology 24 (2), 309–19.CrossRefGoogle Scholar
Schoch, R. R. 2010. Heterochrony: the interplay between development and ecology exemplified by a paleozoic amphibian clade. Paleobiology 36 (2), 318–34.CrossRefGoogle Scholar
Schoch, R. R. & Witzmann, F. 2009. Osteology and relationships of the temnospondyl Sclerocephalus. Zoological Journal of the Linnean Society 157 (1), 135–68.CrossRefGoogle Scholar
Steyer, J. S., Laurin, M., Castanet, J. & Ricqlès, A. de. 2004. First histological and skeletochronological data on temnospondyl growth: palaeoecological and palaeoclimatological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 206, 193201.CrossRefGoogle Scholar
Sulej, T. 2002. Species discrimination of the Late Triassic temnospondyl amphibian Metoposaurus diagnosticus. Acta Palaeontologica Polonica 47 (3), 535–46.Google Scholar
Sulej, T. 2007. Osteology, variability, and evolution of Metoposaurus, a temnospondyl from the Late Triassic of Poland. Palaeontologia Polonica 64, 29139.Google Scholar
Sulej, T. & Majer, D. 2005. The temnospondyl amphibian Cyclotosaurus from the Upper Triassic of Poland. Palaeontology 48 (1), 157–70.CrossRefGoogle Scholar
Szulc, J. 2007. Keuper. In Szulc, J. & Becker, A. (eds) Fieldtrip Guide, International Workshop on the Triassic of Southern Poland; Pan–European Correlation on the Epicontinental Triassic, 4th Meeting, 56.Google Scholar
Wells, N. A. 1989. Making thin sections. In Feldmann, R. M., Chapman, R. E. & Hannibal, J. T. (eds) Paleotechniques, 120–29. Knoxville: Department of Geological Sciences, University of Tennessee.Google Scholar
Witzmann, F. 2005. Hyobranchial and postcranial ontogeny of the temnospondyl Onchiodon labyrinthicus from Niederhäslich (Döhlen Basin, Autunian, Saxony). Paläontologische Zeitschrift 79 (4), 479–92.CrossRefGoogle Scholar
Witzmann, F. 2006. Developmental patterns and ossification sequence in the Permo Carboniferous temnospondyl Archegosaurus decheni (Saar–Nahe Basin, Germany). Journal of Vertebrate Paleontology 26 (1), 717.CrossRefGoogle Scholar
Witzmann, F. 2009. Comparative histology of sculptured dermal bones in basal tetrapods, and the implications for the soft tissue dermis. Palaeodiversity 2, 233–70.Google Scholar
Witzmann, F. & Schoch, R. R. 2006a. The postcranium of Archegosaurus decheni, and a phylogenetic analysis of temnospondyl postcrania. Palaeontology 49 (6), 1211–35.CrossRefGoogle Scholar
Witzmann, F. & Schoch, R. R. 2006b. Skeletal development of the temnospondyl Acanthostomatops vorax from the Lower Permian Döhlen basin of Saxony. Transactions of the Royal Society of Edinburgh: Earth Sciences 96 (4), 365–85.CrossRefGoogle Scholar
Witzmann, F. & Soler–Gijón, R. 2010. The bone histology of osteoderms in temnospondyl amphibians and in the chroniosuchian Bystrowiella. Acta Zoologica (Stockholm) 91 (1), 96114.CrossRefGoogle Scholar
11
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Histological characteristics of the vertebral intercentra of Metoposaurus diagnosticus (Temnospondyli) from the Upper Triassic of Krasiejów (Upper Silesia, Poland)
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Histological characteristics of the vertebral intercentra of Metoposaurus diagnosticus (Temnospondyli) from the Upper Triassic of Krasiejów (Upper Silesia, Poland)
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Histological characteristics of the vertebral intercentra of Metoposaurus diagnosticus (Temnospondyli) from the Upper Triassic of Krasiejów (Upper Silesia, Poland)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *