Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-25T05:44:33.973Z Has data issue: false hasContentIssue false

Dynamic model of dehydration melting motivated by a natural analogue: applications to the Ivrea–Verbano zone, northern Italy

Published online by Cambridge University Press:  03 November 2011

Scott A. Barboza
Affiliation:
Scott A. Barboza and George W. Bergantz, Department of Geological Sciences and Volcano Systems Center, Box 351310,University of Washington, Seattle, WA 98195,U.S.A. E-mail: barboza@u.washington.edu
George W. Bergantz
Affiliation:
Scott A. Barboza and George W. Bergantz, Department of Geological Sciences and Volcano Systems Center, Box 351310,University of Washington, Seattle, WA 98195,U.S.A. E-mail: barboza@u.washington.edu

Abstract:

Dehydration melting of crustal rocks may commonly occur in response to the intrusion of mafic magma in the mid- or lower crust. However, the relative importance of melt buoyancy, shear or dyking in melt generation and extraction under geologically relevant conditions is not well understood. A numerical model of the partial melting of a metapelite is presented and the model results are compared with the Ivrea-Verbano Zone in northern Italy. The numerical model uses the mixture theory approach to modelling simultaneous convection and phase change and includes special ramping and switching functions to accommodate the rheology of crystal-melt mixtures in accordance with the results of deformation experiments. The model explicitly includes both porous media flow and thermally and compositionally driven bulk convection of a restitecharged melt mass. A range of melt viscosity and critical melt fraction models is considered. General agreement was found between predicted positions of isopleths and those from the Ivrea-Verbano Zone. Maximum melt velocities in the region of porous flow are found to be 1 × 10−7 and 1 × 10−1m per year in the region of viscous flow. The results indicate that melt buoyancy alone may not be a sufficient agent for melt extraction and that extensive, vigorous convection of partially molten rocks above mafic bodies is unlikely, in accord with direct geological examples.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, P. K.&O'Neill, B. K. 1988. Transport phenomena in multiparticle system—I. Pressure drop and friction factors: unifying the hydraulic-radius and submerged-object approaches. CHEM ENG SCI 43, 2487–99.CrossRefGoogle Scholar
Arzi, A. A. 1978. Critical phenomena in the rheology of partially melted rocks. TECTONOPHYSICS 44, 173–84.CrossRefGoogle Scholar
Barboza, S. A. 1995. The dynamics of dehydration melting and implications for melt extraction in the lower crust following underplating: an example from the Ivrea-Verbano Zone, northern Italy. M.S. Thesis, University of Washington.Google Scholar
Beard, J. S.&Lofgren, G. E. 1989. Effects of water on the composition of partial melts of greenstone and amphibolite. SCIENCE 244, 195–7.CrossRefGoogle ScholarPubMed
Beckermann, C.&Viskanta, R. 1988. Double-diffusive convection during dendritic solidification of a binary mixture. PHYSIOCHEM HYDRODYN 10, 195213.Google Scholar
Bennon, W. D.&Incropera, F. P. 1987. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems-I. Model formulation. INT J HEAT MASS TRANSFER 30, 2161–70.CrossRefGoogle Scholar
Bergantz, G. W. 1989. Underplating and partial melting: implications for melt generation and extraction. SCIENCE 245, 1093–5.CrossRefGoogle ScholarPubMed
Bergantz, G. W. 1995. Changing techniques and paradigms for the evaluation of magmatic processes. J GEOPHYS RES 100, 17, 603–13.CrossRefGoogle Scholar
Bergantz, G. W.&Dawes, R. 1994. Aspects of magma generation and ascent in continental lithosphere. In Ryan, M.P. (ed.) Magmatic systems, 291317. San Diego: Academic Press.CrossRefGoogle Scholar
Boriani, A., Bigioggero, B.&Origoni Giobbi, E. 1977. Metamorphism, tectonic evolution, and tentative stratigraphy of the ‘Serie dei Laghi’—geological map of the Verbania Area (Northern Italy). MEM IST GEOL MINERAL UNIV PADOVA 32, 125.Google Scholar
Boriani, A., Burlini, L., Caironi, V., Origoni, E. G., Sassi, A.&Sesana, E. 1988. Geological and petrological studies on the Hercynian plutonism of Serie dei Laghi—geological map of its occurrence between Valsesia and Lago Maggiore (N-Italy). REND SOC ITAL MINERAL PETROL 43 2, 367–84.Google Scholar
Bowers, J. R., Kerrick, D. M.&Furlong, K. P. 1990. Conduction model for the thermal evolution of the Cupsuptic aureole, Maine. AM J SCI 290, 644–65.CrossRefGoogle Scholar
Brown, G. C.&Fyfe, W. S. 1970. The production of granitic melts during ultrametamorphism. CONTRIB MINERAL PETROL 28, 310–8.CrossRefGoogle Scholar
Brown, M. 1994. The generation, segregation, ascent and emplacement of granite magma: the migmatite-to-crustally-derived granite connection in thickened orogens. EARTH SCI REV 36, 83130.CrossRefGoogle Scholar
Brown, M., Averkin, Y. A., McLellan, E. L.&Sawyer, E. W. 1995. Melt segregation in migmatites. J GEOPHY RES 100, 15, 655–79.Google Scholar
Buntebarth, G. 1991. Thermal models of cooling. In Voll, G., Topel, J., Pattison, D.R.M. and Seifert, F. (eds.) Equilibrium and kinetics in contact metmorphism: the Ballachulish Igneous Complex and its aureole, 379404, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
Clemens, J. D.&Mawer, C. K. 1992. Granitic magma transport by fracture propagation. TECTONOPHYSICS 204, 339–60.CrossRefGoogle Scholar
Davison, I., McCarthy, M., Powell, D., Torres, H. H. F.&Santos, C. A. 1995. Laminar fow in shear zones: the Pernambuco Shear Zone, NE Brazil. J STRUCT GEOL 17, 149–61.CrossRefGoogle Scholar
Fountain, D. M. 1976. The Ivrea Verbano and Strona Ceneri zones, northern Italy, a cross-section of the continental crust: new evidence from seismic velocities of rock samples. TECTONOPHYSICS 33, 145–65.CrossRefGoogle Scholar
Fyfe, W. S. 1973. The granulite facies, partial melting and the Archean crust. PHIL TRANS R SOC LONDON SER A 273, 457–61.Google Scholar
Giese, P. 1968. Die Struktur der Erdkruste im Bereich der Ivrea-Zone. Ein Vergleich verschiedener, seismischer Interpretationen und der Versuch einer petrographisch-geologischen Deutung. SCHWEIZ MINERAL PETROGR MITT 48, 261–84.Google Scholar
Ghiorso, M. S.&Sack, R. O. 1995. Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. CONTRIB MINERAL PETROL 119, 197212.CrossRefGoogle Scholar
Grant, J. A.&Frost, B. R. 1990. Contact metamorphism and partial melting of pelitic rocks in the aureole of the Laramie anorthosite complex, Morton Pass, Wyoming. AM J SCI 290, 425–72.CrossRefGoogle Scholar
Harris, N., Ayres, M.&Massey, J. 1995. Geochemistry of granitic melts produced during the incongruent melting of muscovite: implications for the extraction of Himalayan leucogranite magmas. J GEOPHYS RES 100, 15, 767–77.CrossRefGoogle Scholar
Huppert, H. E.&Sparks, R. S. J. 1988. The generation of granitic magmas by intrusion of basalt into continental crust. J PETROL 29, 599624.CrossRefGoogle Scholar
Huppert, H. E.&Sparks, R. S. J. 1991. Comments on ‘On convective style and vigor in sheetlike magma chambers’ by Bruce D, Marsh. J PETROL 32, 851–4.CrossRefGoogle Scholar
Hyndman, D. W. 1981. Controls on source and depth of emplacement of granitic magma. GEOLOGY 9, 244–9.2.0.CO;2>CrossRefGoogle Scholar
Irvine, T. N. 1970. Heat transfer during solidification of layered intrusions. I. Sheets and Sills. CAN J EARTH SCI 7, 1031–61.CrossRefGoogle Scholar
Jaupart, C.&Tait, S. 1995. Dynamics of differentiation in magma reservoirs. J GEOPHYS RES 100, 17, 615–36.CrossRefGoogle Scholar
Kay, R. W.&Kay, S. M. 1980. Chemistry of the lower crust: inferences from magmas and xenoliths. In National Research Council. Geophysics Study Committee (eds) Continental Tectonics, 139–50 Washington DC: National Academy of Sciences.Google Scholar
Kissling, E. 1980. Krustenaufbau und Isostasie in der Schweiz. Ph.D. Thesis, ETH, Zurich.Google Scholar
Le Breton, N.&Thompson, A. B. 1988. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of anatexis. CONTRIB MINERAL PETROL 99, 226–37.CrossRefGoogle Scholar
Litvinovsky, B. A.&Podladchikov, Y. Y. 1993. Crustal anatexis during the influx of mantle volatiles. LITHOS 30, 93107.CrossRefGoogle Scholar
Marsh, B. D. 1981. On the crystallininty, probability of occurrence and rheology of lava and magma. CONTRIB MINERAL PETROL 78, 8598.CrossRefGoogle Scholar
Marsh, B. D. 1991. Reply to comments of Huppert and Sparks. J PETROL 32, 855–60.CrossRefGoogle Scholar
Mehnert, K. R. 1968. Migmatites and the origin of granitic rocks. 335–42. Amsterdam: Elsevier.Google Scholar
Mehnert, K. R. 1975. The Ivrea zone, a model of the deep crust. N JAHRB MINERAL ABH 125, 156–99.Google Scholar
Miller, C. F., Watson, E. B.&Harrison, T. M. 1988. Perspectives on the source, segregation and transport of granitoid magmas. TRANS R SOC EDINBURGH: EARTH SCI 79, 135–56.Google Scholar
Ni, J.&Beckermann, C. 1991. A volume-averaged two-phase model for transport phenomena during solidification. MET TRANS B 22, 349–61.CrossRefGoogle Scholar
Nicolas, A. 1989. Structures of ophiolites and dynamics of ocean lithosphere, 367. Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
Oldenburg, C. M.&Spera, F. J. 1991. Numerical modeling of solidification and convection in a viscous pure binary eutectic system. INT J HEAT MASS TRANSFER 34, 2107–21.CrossRefGoogle Scholar
Oldenburg, C. M.&Spera, F. J. 1992. Hybrid model for solidification and convection. NUMER HEAT TRANSFER B 21, 217–29.CrossRefGoogle Scholar
Patiño Douce, A. E.&Johnston, A. D. 1990. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. CONTRIB MINERAL PETROL 107, 202–18.CrossRefGoogle Scholar
Pitcher, W. S. 1993. The Origin of Granite, 321. Glasgow: Blackie Academic.CrossRefGoogle Scholar
Prakash, C.&Voller, V. R. 1989. On the numerical solution of continuum mixture model equations describing binary solidliquid phase change. NUMER HEAT TRANSFER B 15, 171–89.CrossRefGoogle Scholar
Quick, J. E., Sinigoi, S.&Mayer, A. 1994. Emplacement dynamics of a large mafic intrusion in the lower crust, Ivrea-Verbano Zone, northern Italy. J GEOPHYS RES 99, 21, 559–73.CrossRefGoogle Scholar
Rivalenti, G., Garuti, G.&Rossi, A. 1975. The origin of the Ivrea-Verbano basic formation (Western Italian Alps)—whole rock geochemistry. BOLL SOC GEOL ITAL 94, 1149–86.Google Scholar
Rivalenti, G., Garuti, G., Rossi, A., Siena, F.&Sinigoi, S. 1980. Existence of different peridotite types and of a layered igneous complex in the Ivrea-zone of the Western Alps. J PETROL 22, 127–53.CrossRefGoogle Scholar
Rushmer, T. 1991. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. CONTRIB MINERAL PETROL 107, 4159.CrossRefGoogle Scholar
Rushmer, T. 1995. An experimental deformation study of partially molten amphibolite: application to low-melt fraction segregation. J GEOPHYS RES 100, 15, 681–95.CrossRefGoogle Scholar
Rutter, E. H.&Neumann, D. H. K. 1995. Experimental deformation of parially moten Westerly granite under fluid-absent conditions, with implications for the extraction of granitic magmas. J GEOPHYS RES 100, 15, 697715.CrossRefGoogle Scholar
Sawyer, E. W. 1991. Disequilibrium melting and the rate of meltresiduum separation during migmatization of mafic rocks from the Grenville Front. Quebec. J PETROL 32, 701–38.CrossRefGoogle Scholar
Sawyer, E. W. 1994. Melt segregation in the continental crust. GEOLOGY 22, 1019–22.2.3.CO;2>CrossRefGoogle Scholar
Schnetger, B. 1994. Partial melting during the evolution of the amphibolite-to granulite-facies gneisses of the Ivrea Zone, northern Italy. CHEM GEOL 113, 71101.CrossRefGoogle Scholar
Schmid, R. 1978/1979. Are the metapelites of the Ivrea-Verbano Zone restites? MEM IST GEOL MINERAL UNIV PADOVA 33, 67–9.Google Scholar
Schmid, S. M.&Wood, B. J. 1976. Phase relationships in granulitic metapelites from the Ivrea-Verbano zone. CONTRIB MINERAL PETROL 54, 255–79.CrossRefGoogle Scholar
Schmid, S. M., Zingg, A.&Handy, M. 1987. The kinematics of movements along the Insubric Line and the emplacement of the Ivrea Zone. TECTONOPHYSICS 135, 4766.CrossRefGoogle Scholar
Schulze, F., Behrens, H.&Holtz, F. 1994. Effect of water on the viscosity of haplogranitic melts. Experimental investigation using the falling sphere method. EOS, TRANS AM GEOPHYS UNION 75 (44), 724.Google Scholar
Shaw, H. R. 1972. Viscosities of magmatic liquids: an empirical method of prediction. AM J SCI 272, 870–93.CrossRefGoogle Scholar
Sills, J. D.&Tarney, J. 1984. Petrogenesis and tectonic significance of amphibolites interlayered with meta-sedimentary gneisses in the Ivrea Zone, Southern Alps, NW Italy. TECTONOPHYSICS 107, 187206.CrossRefGoogle Scholar
Sinigoi, S., Quick, J. E., Clemens-Knott, D., Mayer, A.. Dimarchi, G.. Mazzucchelli, M., Negrini, L.&Rivalenti, G. 1994. Chemical evolution of a large mafic intrusion in the lower crust, Ivrea-Verbano Zone, northern Italy. J GEOPHYS RES, 99, 21, 575–90.CrossRefGoogle Scholar
Sinton, J. M.&Detrick, R. S. 1992. Mid-ocean ridge magma chambers. J GEOPHYS RES 97, 197216.CrossRefGoogle Scholar
Swanson, D. A., Cameron, K. A., Evarts, R. C, Pringle, P. T.&Vance, J. A. 1989. Cenozoic volcanism in the Cascade Range and Columbia Plateau, southern Washington and northermost Oregon. NEW MEXICO BUR MINES MINERAL RES MEM 47, 150.Google Scholar
Symmes, G. H.&Ferry, J. M. 1995. Metamorphism. fluid flow and partial melting in pelitic rocks from the Onawa contact aureole, central Maine, USA. J PETROL 36, 587612.CrossRefGoogle Scholar
Thompson, A. B. 1982. Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. AM J SCI 282, 1567–95.CrossRefGoogle Scholar
van der Molen, I.&Paterson, M. S. 1979. Experimental deformation of partially-melted granite. CONTRIB MINERAL PETROL 70, 299318.CrossRefGoogle Scholar
Vielzeuf, D.&Holloway, J. R. 1988. Experimental determination of the fluid-absent melting relations in the pelitic system. CONTRIB MINERAL PETROL 98, 257–76.CrossRefGoogle Scholar
Whitney, J. A. 1988. The origin of granite: the role and source of water in the evolution of granitic magmas. GEOL SOC AM BULL 100, 1886–97.2.3.CO;2>CrossRefGoogle Scholar
Wickham, S. M. 1987. The segregation and emplacement of granitic magmas. J GEOL SOC LONDON 144, 281–97.CrossRefGoogle Scholar
Wildemuth, C. R.&Williams, M. C. 1984. Viscosity of suspensions modeled with a shear dependent maximum packing fraction. RHEOL ACTA 23, 627–35.CrossRefGoogle Scholar
Wyllie, P. J. 1977. Crustal anatexis: an experimental review. TECTONOPHYSICS 43, 4171.CrossRefGoogle Scholar
Yardley, B. W. D. 1986. Is there water in the deep continental crust? NATURE 323, 111.CrossRefGoogle Scholar
Zingg, A. 1980. Regional metamorphism in the Ivrea Zone (Southern Alps, N-Italy): field and microscopic investigations. SCHWEIZ MINERAL PETROGR MITT 60, 153–79.Google Scholar
Zingg, A. 1983. The Ivrea and Strona-Ceneri Zones (Southern Alps, Ticino and North Italy): a review. SCHWEIZ MINERAL PETROGR MITT 63, 361–92.Google Scholar