Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T21:24:26.872Z Has data issue: false hasContentIssue false

Patterns of tree species composition at watershed-scale in the Amazon ‘arc of deforestation’: implications for conservation

Published online by Cambridge University Press:  29 July 2016

PAULO SÉRGIO MORANDI
Affiliation:
Universidade do Estado de Mato Grosso, Campus de Nova Xavantina, BR 158, km 655, Caixa Postal 08, 78690-000, Nova Xavantina, MT, Brazil
BEATRIZ SCHWANTES MARIMON*
Affiliation:
Universidade do Estado de Mato Grosso, Campus de Nova Xavantina, BR 158, km 655, Caixa Postal 08, 78690-000, Nova Xavantina, MT, Brazil
PEDRO V. EISENLOHR
Affiliation:
Universidade do Estado de Mato Grosso, Campus de Alta Floresta, MT 208, km 147, Caixa Postal 324, 78580-000, Alta Floresta, MT, Brazil
BEN HUR MARIMON-JUNIOR
Affiliation:
Universidade do Estado de Mato Grosso, Campus de Nova Xavantina, BR 158, km 655, Caixa Postal 08, 78690-000, Nova Xavantina, MT, Brazil
CLAUDINEI OLIVEIRA-SANTOS
Affiliation:
Universidade do Estado de Mato Grosso, Campus de Nova Xavantina, BR 158, km 655, Caixa Postal 08, 78690-000, Nova Xavantina, MT, Brazil
TED R. FELDPAUSCH
Affiliation:
College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4RJ, UK
EDMAR ALMEIDA DE OLIVEIRA
Affiliation:
Universidade do Estado de Mato Grosso, Campus de Nova Xavantina, BR 158, km 655, Caixa Postal 08, 78690-000, Nova Xavantina, MT, Brazil
SIMONE MATIAS REIS
Affiliation:
Universidade do Estado de Mato Grosso, Campus de Nova Xavantina, BR 158, km 655, Caixa Postal 08, 78690-000, Nova Xavantina, MT, Brazil
JON LLOYD
Affiliation:
Imperial College London, Faculty of Natural Sciences, Department of Life Sciences, SW7 2AZ, London, UK
OLIVER L. PHILLIPS
Affiliation:
University of Leeds, School of Geography, LS2 9JT, Leeds, UK
*
*Correspondence: Beatriz Schwantes Marimon Tel: +55-66-3438-1224 e-mail: biamarimon@unemat.br

Summary

The loss of biodiversity in transitional forests between the Cerrado and Amazonia, the two largest neotropical phytogeographic domains, is an issue of great concern. This extensive region is located within the ‘arc of deforestation’ zone where tropical forests are being lost at the fastest rate on the planet, but floristic diversity and variation among forests here is still poorly understood. We aimed to characterize the floristic composition of forests in this zone and explored the degree and drivers of differentiation within and across Araguaia and Xingu watersheds. In 10 sites we identified all trees with diameter ≥10 cm; these totaled 4944 individuals in 257 species, 107 genera and 52 families. We evaluated the data for multivariate variation using TWINSPAN and DCA to understand the species distribution among sites. There was a larger contribution from the Amazonian flora (169 species) than that of the Cerrado (109) to the transitional forests. Remarkably, 142 species (55%) were restricted to only one sampling site, while 29 species (>16%) are endemic to Brazil, suggesting potentially large loss of species and unique forest communities with the loss and fragmentation of large areas. Our results also suggest that watersheds may be a critical factor driving species distribution among forests in the Amazonian–Cerrado transition zone, and quantifying their role can provide powerful insight into devising better conservation strategies for the remaining forests.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ab'Saber, A. (2003) Os Domínios de natureza no Brasil: potencialidades paisagísticas. São Paulo, SP, Brasil: Ateliê.Google Scholar
Ackerly, D.D., Thomas, W.W., Ferreira, C.A.C. & Pirani, J.R. (1989) The forest-cerrado transition zone in southern Amazonia: results of the 1985 Projeto Flora Amazonica Expedition to Mato Grosso. Brittonia 41: 113128.Google Scholar
Alvares, C.A., Stape, J.L., Sentelhas, P.C., Moraes, J.L.M. & Sparovek, G. (2013) Köppen's climate classification map for Brazil. Meteorologische Zeitschrift 22: 711728.Google Scholar
Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society of London 161: 105121.Google Scholar
Araujo, R.A., Costa, R.B., Felfili, J.M., Kuntz, I., Sousa, R.A.T.M. & Dorval, A. (2009) Florística e estrutura de fragmento florestal em área de transição na Amazônia Matogrossense no município de Sinop. Acta Amazonica 39: 865878.Google Scholar
Askew, G.P., Moffatt, D.J., Montgomery, R.F. & Searl, P.L. (1970) Soil landscapes in northeastern Mato Grosso. The Geographical Journal 136: 211227.Google Scholar
Balch, J.K., Nepstad, D.C., Brando, P.M., Curran, L.M., Portela, O., Carvalho, O. Jr & Lefebvre, P. (2008) Negative fire feedback in a transitional forest of southeastern Amazonia. Global Changes Biology 14: 112.Google Scholar
Bell, G. (2001) Neutral macroecology. Science 293: 2413.CrossRefGoogle ScholarPubMed
Campbell, D.G., Daly, D.C., Prance, G.T. & Maciel, U.N. (1986) Quantitative ecological inventory of terra firme and varzea tropical forest on the Rio Xingu, Brazilian Amazon. Brittonia 38: 369393.Google Scholar
Castro, A.A.J.F, Martins, F.R., Tamashiro, J.Y. & Shepherd, G.J. (1999) How rich is the flora of Brazilian Cerrados? Annals of the Missouri Botanical Garden 86: 192224.CrossRefGoogle Scholar
Condit, R., Ashton, P., Balslev, H., Brokaw, N., Bunyavejchewin, S., Chuyong, G., Co, L., Dattaraja, H., Davies, S., Esufali, S., Ewango, C., Foster, R., Gunatilleke, S., Gunatilleke, N., Hernandez, C., Hubbell, S.P., John, R., Kenfack, D., Kiratiprayoon, S., Hall, P., Hart, T., Itoh, A., LaFrankie, J., Liengola, I., Lagunzad, D., Lao, S., Losos, E., Magard, E., Makana, J., Manokaran, N., Navarrete, H., Mohammed Nur, S., Okhubo, T., Pérez, R., Samper, C., Seng, L.H., Sukumar, R., Svenning, J., Tan, S., Thomas, D., Thomspon, J., Vallejo, M., Villa Muñoz, G., Valencia, R., Yamakura, T. & Zimmerman, J. (2005) Tropical tree α-diversity: results from a worldwide network of large plots. Biologiske Skrifter 55: 565582.Google Scholar
Condit, R., Pitman, N., Leigh, E.G. Jr, Chave, J., Terborgh, J., Foster, R.B., Núñez, V., Aguilar, S., Valencia, R., Villa, G., Muller-Landau, H.C., Losos, E. & Hubbell, S.P. (2002) Beta-diversity in tropical forest trees. Science 295: 666669.CrossRefGoogle ScholarPubMed
Costa, L.P. (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. Journal of Biogeography 30: 7186.Google Scholar
Davidson, E.A., Araújo, A.C., Artaxo, P., Balch, J.K., Brown, I.F., Bustamante, M.M.C., Coe, M.T., DeFries, R.S., Keller, M., Longo, M., Munger, J.W., Schroeder, W., Soares-Filho, B.S., Sousa, C.M. Jr & Wofsy, S.C. (2012) The Amazon Basin in transition. Nature 481: 321328.Google Scholar
Fearnside, P.M. (2005) Deforestation in Brazilian Amazonia: history, rates, and consequences. Conservation Biology 19: 680688.CrossRefGoogle Scholar
Fiaschi, P. & Pirani, J.R. (2009) Review of plant biogeographic studies in Brazil. Journal of Systematics and Evolution 47: 477496.Google Scholar
Food and Agriculture Organization of the United Nations (FAO) (2006) Guidelines for soil description. Rome, Italy: Information Division, FAO.Google Scholar
Francis, A.P. & Currie, D.J. (1998) Global patterns of tree species richness in moist forests: another look. Oikos 81: 598602.CrossRefGoogle Scholar
Fu, R., Yin, L., Li, W., Arias, P.A., Dickinson, R.E., Huang, L., Chakraborty, S., Fernandes, K., Liebmann, B., Fisher, R. & Myneni, R.B. (2013) Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proceedings of the National Academy of Sciences 110: 1811018115.CrossRefGoogle ScholarPubMed
Gentry, A.H. (1988) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75: 134.CrossRefGoogle Scholar
Gurevitch, J., Scheiner, S.M. & Fox, G.A. (2009) Ecologia Vegetal, 2nd Edition. Porto Alegre, RS, Brasil: Artmed.Google Scholar
Hill, M.O. & Gauch, H.G. (1980) Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 4758.CrossRefGoogle Scholar
Hoffmann, W.A., Geiger, E.L., Gotsch, S.G., Rossatto, D.R., Silva, L.C.R., Lau, O.L., Haridasan, M. & Franco, A. (2012) Ecological thresholds at the savanna–forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecology Letters 15: 759768.Google Scholar
Hubbell, S.P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton, New Jersey, USA: Princeton University Press.Google Scholar
Hutchinson, G.E. (1957) Concluding remarks. Cold Spring Harbor Symposium 22: 415427.CrossRefGoogle Scholar
Instituto Brasileiro de Geografia e Estatística (IBGE) (2012) Manual Técnico da Vegetação Brasileira, 2nd Edition. Rio de Janeiro, RJ, Brasil: Editora IBGE.Google Scholar
Instituto Brasileiro de Geografia e Estatística (IBGE) (2015) Mapa geomorfológico [www document]. URL ftp://geoftp.ibge.gov.br/informacoes_ambientais/geomorfologia/mapas/unidades_da_federacao/mt_geomorfologia.pdf Google Scholar
Ivanauskas, N.M., Monteiro, R. & Rodrigues, R.R. (2004 a) Estrutura de um trecho de Floresta Amazônica na Bacia do Alto Rio Xingu. Acta Amazonica 34: 275299.CrossRefGoogle Scholar
Ivanauskas, M.M., Monteiro, R. & Rodrigues, R.R. (2004 b) Composição florística de trechos florestais na borda sul-amazônica. Acta Amazonica 34: 399413.Google Scholar
Ivanauskas, N.M., Monteiro, R. & Rodrigues, R.R. (2008) Classificação fitogeográfica das florestas do Alto Rio Xingu. Acta Amazonica 38: 387402.Google Scholar
Kunz, S.H., Ivanauskas, N.M., Martins, S.V., Silva, E. & Stefanello, D. (2008) Aspectos florísticos e fitossociológicos de um trecho de Floresta Estacional Perenifólia na Fazenda Trairão, Bacia do Rio das Pacas, Querência-MT. Acta Amazonica 38: 245254.CrossRefGoogle Scholar
Lacher, T.E. & Alho, C.J.R. (2001) Terrestrial small mammal richness and habitat associations in an Amazon forest–Cerrado contact zone. Biotropica 33: 171181.Google Scholar
Landeiro, V.L., Hamada, N., Godoy, B.S. & Melo, A.S. (2010) Effects of litter patch area on macroinvertebrate assemblage structure and leaf breakdown in Central Amazonian streams. Hydrobiologia 649: 355363.Google Scholar
Lehmann, C.E.R., Archibald, S.A., Hoffmann, W.A. & Bond, W.J. (2011) Deciphering the distribution of the savanna biome. New Phytologist 191: 197209.CrossRefGoogle ScholarPubMed
Lewis, S.L., Brando, P.M., Phillips, O.L., Heijden, G.M.F. & Nepstad, D. (2011) The 2010 Amazon drought. Science 331: 554.Google Scholar
Lima-Filho, D.A., Rivilha, J., Amaral, I.L., Matos, F.D.A., Coelho, L.S., Ramos, J.F., Silva, G.B. & Guedes, J.O. (2004) Aspectos florísticos de 13 hectares da área de Cachoeira Porteira-PA. Acta Amazonica 34: 415423.CrossRefGoogle Scholar
Lista de Espécies da Flora do Brasil (2012) Jardim Botânico do Rio de Janeiro [www document]. URL http://floradobrasil.jbrj.gov.br/reflora/listaBrasil/ Google Scholar
Loarie, S.R., Duffy, P.B., Hamilton, H., Asner, G.P., Field, C.B. & Ackerly, D.D. (2009) The velocity of climate change. Nature 462: 10521055.Google Scholar
Lopez-Gonzalez, G., Lewis, S.L., Burkitt, M. & Phillips, O.L. (2011) ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. Journal of Vegetation Science 22: 610613.Google Scholar
Marengo, J.A., Tomasella, J., Alves, L.M., Soares, W.R. & Rodriguez, D.A. (2011) The drought of 2010 in the context of historical droughts in the Amazon region. Geophysical Research Letters 38: 15.Google Scholar
Marimon, B.S., Felfili, J.M. & Haridasan, M. (2001) Studies in monodominant forests in eastern Mato Grosso, Brazil: I. A forest of Brosimum rubescens Taub. Edinburgh Journal of Botany 58: 123137.Google Scholar
Marimon, B.S., Felfili, J.M., Lima, E.S., Duarte, W.M.G. & Marimon-Junior, B.H. (2010) Environmental determinants for natural regeneration of gallery forest at the Cerrado/Amazonia boundaries in Brazil. Acta Amazonica 40: 107118.Google Scholar
Marimon, B.S., Lima, E.S., Duarte, T.G., Chieregatto, L.C. & Ratter, J.A. (2006) Observations on the vegetation of northeastern Mato Grosso, Brazil. IV. An analysis of the Cerrado–Amazonian Forest ecotone. Edinburgh Journal of Botany 63: 323341.Google Scholar
Marimon, B.S., Marimon-Junior, B.H., Feldpausch, T.R., Oliveira-Santos, C., Mews, H.A., Lopez-Gonzalez, G., Franczak, D.D., Oliveira, E.A., Maracahipes, L., Miguel, A., Lenza, E. & Phillips, O.L. (2014) Disequilibrium and hyperdynamic tree turnover at the forest–savanna transition zone in southern Amazonia. Plant Ecology & Diversity 7: 281292.Google Scholar
Marimon-Junior, B.H. & Haridasan, M. (2005) Comparação da vegetação arbórea e características edáficas de um cerradão e um cerrado sensu stricto em áreas adjacentes sobre solo distrófico no leste de Mato Grosso, Brasil. Acta Botanica Brasilica 19: 913926.Google Scholar
McCune, B. & Grace, J.B. (2002) Analysis of Ecological Communities. Gleneden Beach, Oregon, USA: MjM Software Design.Google Scholar
McCune, B. & Mefford, M.J. (2006) PC-ORD – Multivariate Analysis Of Ecological Data, Version 5.0. Gleneden Beach, Oregon, USA: MjM Software Design.Google Scholar
Méio, B.B., Freitas, C.V., Jatobá, L., Silva, M.E.F., Ribeiro, J.F. & Henriques, R.P.B. (2003) Influência da flora das florestas amazônica e atlântica na vegetação do cerrado sensu stricto . Revista Brasileira de Botânica 26: 437444.Google Scholar
Mews, H.A., Marimon, B.S., Pinto, J.R.R. & Silvério, D.V. (2011) Dinâmica estrutural da comunidade lenhosa em Floresta Estacional Semidecidual na transição Cerrado–Floresta Amazônica, Mato Grosso, Brasil. Acta Botanica Brasilica 25: 845857.Google Scholar
Moraes, B.C., Costa, J.M.N., Costa, A.C.L. & Costa, M.H. (2005) Variação espacial e temporal da precipitação no estado do Pará. Acta Amazonica 35: 207214.CrossRefGoogle Scholar
Murphy, B.P. & Bowman, D.M.J.S. (2012) What controls the distribution of tropical forest and savanna? Ecology Letters 15: 748758.Google Scholar
Oliveira, A.N. & Amaral, I.L. (2004) Florística e fitossociologia de uma floresta de vertente na Amazônia Central, Amazonas, Brasil. Acta Amazonica 34: 2134.Google Scholar
Oliveira, A.N., Amaral, I.L., Ramos, M.B.P., Nobre, A.D., Couto, L.B. & Sahdo, R.M. (2008) Composição e diversidade florístico-estrutural de um hectare de floresta densa de terra firme na Amazônia Central, Amazonas, Brasil. Acta Amazonica 38: 627642.Google Scholar
Oliveira, C.M., Santos, J.B. & Santos-Costa, M.C. (2010) Os animais da Tanguro, Mato Grosso: diversidade na zona de transição entre a Floresta Amazônica e o Cerrado. Museu Paranaense Emílio Goeldi, p. 115 [www document]. URL https://issuu.com/museu-goeldi/docs/osanimaisdetanguro Google Scholar
Oliveira-Filho, A.T. & Ratter, J.A. (1995) A study of the origin of central Brazilian forests by the analysis of plant species distribution patterns. Edinburgh Journal of Botany 52: 141194.Google Scholar
Pereira, B.A.S., Venturoli, F. & Carvalho, F.A. (2011) Florestas estacionais no cerrado: uma visão geral. Pesquisa Agropecuária Tropical 41: 446455.Google Scholar
Peterson, A.T. & Watson, D.M. (1998) Problems with areal definitions of endemism: the effects of spatial scaling. Diversity and Distribuitions 4: 189194.Google Scholar
Phillips, O.L., Aragão, L.E.O.C., Lewis, S.L., Fisher, J.B., López-González, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C.A., Van Der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T.R., Bánki, O., Blanc, L., Bonal, D., Brando, P.M., Chave, J., Oliveira, A.C.A., Cardozo, N.D., Czimczik, C.I., Feldpausch, T.R., Freitas, M.A., Gloor, E., Higuchi, N., Jiménez, E., Lloyd, G., Meir, P., Mendoza, C., Morel, A., Neill, D.A., Nepstad, D., Patiño, S., Peñuela, M.C., Prieto, A., Ramirez, F., Schwartz, M., Silva, J., Silveira, M., Thomas, A.S., Ter Steege, H., Stropp, J., Vásques, R., Zelazowski, P., Dávila, E.A., Andelman, S., Andrade, A., Chao, K.J., Erwin, T., Di Fiore, A., Homorio, E., Keeling, H., Killeen, T.J., Laurance, W.F., Cruz, A.P., Pitman, N.C.A., Vargas, P.N., Ramírez-Angulo, H., Rudas, A., Salamão, R., Silva, N., Terborgh, J. & Torres-Lezama, A. (2009) Drought sensitivity of the Amazon rainforest. Science 323: 13441347.CrossRefGoogle ScholarPubMed
Phillips, O.L., Martinez, R.V., Vargas, P.N., Monteagudo, A.L., Zans, M.C., Sánchez, W.G. & Rose, S. (2003) Efficient plot-based floristic assessment of tropical forests. Journal of Tropical Ecology 19: 629645.CrossRefGoogle Scholar
Pinto, J.R.R. & Oliveira-Filho, A.T. (1999) Perfil florístico e estrutura da comunidade arbórea de uma floresta de vale no Parque Nacional da Chapada dos Guimarães, Mato Grosso, Brasil. Revista Brasileira de Botanica 22: 5367.Google Scholar
Qian, H. (1999) Spatial pattern of vascular plant diversity in North America, North of Mexico and its floristic relationship with Eurasia. Annals of Botany 83: 271283.Google Scholar
R Development Core Team (2014) A language and environment for statistical computing. http://www.R-project.org [ver. 2.13.0]. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Ratter, J.A., Bridgewater, S. & Ribeiro, J.F. (2003) Analysis of the floristic composition of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh Journal of Botany 60: 57109.Google Scholar
Ratter, J.A., Richards, P.W., Argent, G. & Gifford, D.R. (1973) Observations on the vegetation of northeastern Mato Grosso: I. The woody vegetation types of the Xavantina-Cachimbo Expedition area. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 266: 449492.Google Scholar
Ribas, C.C., Aleixo, A., Nogueira, A.C.R., Miyaki, C.Y. & Cracraft, J. (2011) A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proceedings of the Royal Society of London, Series B 279: 681689.Google Scholar
Rocha, R.G., Ferreira, E., Martins, I.C.M., Costa, L.P. & Fonseca, C. (2014) Seasonally flooded stepping stones: emerging diversity of small mammal assemblage in the Amazonia–Cerrado ecotone, central Brazil. Zoological Studies 53: 210.Google Scholar
Rosenberg, M.S. & Anderson, C.D. (2011) PASSaGE: Pattern Analysis, Spatial Statistics, and Geographic Exegesis. Version 2. Methods in Ecology and Evolution 2: 229232.Google Scholar
Sano, S.M., Almeida, S.P. & Ribeiro, J.F. (2008) Cerrado: ecologia e flora. Brasília, DF, Brasil: Embrapa Cerrados.Google Scholar
Schwartz, D. & Namri, M. (2002) Mapping the total organic carbon in the soils of the Congo. Global and Planetary Change 33: 7793.Google Scholar
Sick, H. (1955) O aspecto fitofisionômico da paisagem do médio Rio das Mortes, Mato Grosso, e a avifauna da região. Arquivos do Museu Nacional 42: 541576.Google Scholar
Silva, L.C.R. (2015) Seasonal variation in groundwater depth does not explain structure and diversity of tropical savannas. Journal of Vegetation Science 26: 404406.Google Scholar
Staver, A.C., Archibald, S. & Levin, S.A. (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334: 230232.CrossRefGoogle ScholarPubMed
Tello, J.C.R., Irmão, M.N., Viana, A.L., Bezerra, S.A.S. & Castro, J.P. (2008) Composição florística e estrutura fitossociológica da floresta ombrófila densa sub montana (Platô) face à elaboração do plano de gestão ambiental da área verde do Campus da Universidade Federal do Amazonas. Revista Forestal Venezolana 52: 149158.Google Scholar
ter Steege, H., Pitman, N.C., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.F., Prévost, M.F., Spichiger, R., Castellanos, H., von Hildebrand, P. & Vásquez, R. (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443: 444447.Google Scholar
Torello-Raventos, M., Feldpausch, T.R., Veenendaal, E., Schrodt, F., Saiz, G., Domingues, T.F., Djagbletey, G., Ford, A., Kemp, J., Marimon, B.S., Marimon-Junior, B.H., Lenza, E., Ratter, J.A., Maracahipes, L., Sasaki, D., Sonke, B., Zapfack, L., Taedoumg, H., Villarroel, D., Schwarz, M., Quesada, C.A., Ishida, F.Y., Nardoto, G.B., Affum-Baffoe, K., Arroyo, L., Bowman, D.M.J.S., Compaore, H., Davies, K., Diallo, A., Fyllas, N.M., Gilpin, M., Hien, F., Johnson, M., Killeen, T.J., Metcalfe, D., Miranda, H.S., Steininger, M., Thomson, J., Sykora, K., Mougin, E., Hiernaux, P., Bird, M.I., Grace, J., Lewis, S.L., Phillips, O.L. & Lloyd, J. (2013) On the delineation of tropical vegetation types with an emphasis on forest/savanna transitions. Plant Ecology & Diversity 6: 101137.Google Scholar
Werneck, M.S., Sobral, M.E.G., Rocha, C.T.V., Landau, E.C. & Stehmann, J.R. (2011) Distribution and endemism of Angiosperms in the Atlantic Forest. Natureza & Conservação 9: 188193.Google Scholar
Supplementary material: File

Morandi supplementary material

Table S1

Download Morandi supplementary material(File)
File 22.5 KB
Supplementary material: File

Morandi supplementary material

Table S2

Download Morandi supplementary material(File)
File 124.1 KB