Skip to main content
×
Home
    • Aa
    • Aa

The relationships between land cover, climate and cave copepod spatial distribution and suitability along the Carpathians

  • IOANA NICOLETA MELEG (a1), MAGDALENA NĂPĂRUŞ (a2), FRANK FIERS (a3), IONUŢ HOREA MELEG (a4), MARIUS VLAICU (a5) and OANA TEODORA MOLDOVAN (a1)...
Abstract
SUMMARY

The distribution of subterranean copepods may reflect the persistence of cave assemblages in relation to the environmental health of the overlying landscape. Areas supporting groundwater fauna were established by modelling the persistence of seven copepod species using a geographical information system (GIS). Environmental drivers were found to influence subterranean copepod distribution in the caves of the Romanian Carpathians. Habitat-based modelling, using ordinary least squares regression and geographically-weighted regression to identify the significant predictors explaining copepod habitat suitability, predicted suitable areas for the selected taxa. The most constant predictor was land cover, a measure of human impact and climate change, followed by precipitation and altitude. The model performed well for the majority of analysed taxa, and the areas predicted as suitable for narrowly distributed taxa overlapped with observed distributions. GIS facilitated the prediction of suitable habitat, and also enabled spatial autocorrelation to be tested. The results of this study demonstrate the importance of sustainable management of the terrestrial surface in limestone areas in conserving copepod biodiversity.

Copyright
Corresponding author
*Correspondence: Dr Ioana Nicoleta Meleg e-mail: ioana.meleg@hasdeu.ubbcluj.ro
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H. Akaike (1974) A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716723.

A.J. Boulton , G.D. Fenwick , P.J. Hancock & M.S. Harvey (2008) Biodiversity, functional roles and ecosystem services of groundwater invertebrates. Invertebrate Systematics 22: 103116.

L. Brotons , S. Mañosa & J. Estrada (2004) Modelling the effects of irrigation schemes on the distribution of steppe birds in Mediterranean farmland. Biodiversity and Conservation 13: 10391058.

P. Cardoso , P.A.V. Borges , K.A. Triantis , M.A. Ferrández & H.L. Martín (2010) Adapting the IUCN Red List criteria for invertebrates. Biological Conservation 144: 24322440.

F. Castellarini , F. Malard , M.-J. Dole-Olivier & J. Gibert (2007) Modelling the distribution of stygobionts in the Jura Mountains (eastern France). Implications for the protection of ground waters. Diversity and Distributions 13: 213224.

G.C. Costa , C. Wolfe , D.B. Shepard , J.P. Caldwell & L.J. Vitt (2008) Detecting the influence of climatic variables on species distributions: a test using GIS niche-based model along a steep longitudinal environmental gradient. Journal of Biogeography 35: 637646.

D.L. Danielopol , M. Artheau & P. Marmonier (2009) Site prioritisation for the protection of rare subterranean species: the cases of two ostracods from south-western France. Freshwater Biology 54: 877884.

J. Elith , C.H. Graham , R.P. Anderson , M. Dudik , S. Ferrier , A. Guisan , R.J. Hijmans , H. Huettmann , J.R. Leathwick , A. Lehmann , J. Li , L.G. Lohmann , B.A. Loiselle , G. Manion , C. Moritz , M. Nakamura , Y. Nakazawa , J.C. Overton , A.T. Peterson , S.J. Phillips , K. Richardson , R. Scachetti-Pereira , R.E. Schapire , J. Soberón , S. Williams , M.S. Wisz & N.E. Zimmermann (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129151.

J. Gibert & L. Deharveng (2002) Subterranean ecosystems: a truncated functional biodiversity. BioScience 52: 473481.

J. Gibert , D.C. Culver , M.-J. Dole-Olivier , F. Malard , M.C. Christman & L. Deharveng (2009) Assessing and conserving groundwater biodiversity: synthesis and perspectives. Freshwater Biology 54: 930941.

C. Griebler , H. Stein , C. Kellermann , S. Berkhoff , H. Brielmann , S. Schmidt , D. Selesi , C. Steube , A Fuchs & H.J. Hahn (2010) Ecological assessment of groundwater ecosystems. Vision or illusion? Ecological Engineering 36: 11741190.

A. Guisan & W. Thuiller (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 9931009.

P.J. Hancock , A.J. Boulton & W.F. Humphreys (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeology Journal 13: 98111.

R.J. Hijmans , S.E. Cameron , J.L. Parra , P.G. Jones & A. Jarvis (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 19651978 [www document]. URL http://www.worldclim.org/

T. Lefébure , C.J. Douady , M. Gouy , P. Trontelj , J. Briolay & J. Gibert (2006) Phylogeography of a subterranean amphipod reveals cryptic diversity and dynamic evolution in extreme environments. Molecular Ecology 15: 17971806.

M. Linkie , G. Chapron , D.J. Martyr , J. Holden & N. Leader-Williams (2006) Assessing the viability of tiger subpopulations in a fragmented landscape. Journal of Applied Ecology 43: 576586.

I.N. Meleg , O.T. Moldovan , S. Iepure , F. Fiers & T. Brad (2011) Diversity patterns of fauna in dripping water of caves from Transylvania. Annales de Limnologie - International Journal of Limnology 47: 185197.

I.N. Meleg , F. Fiers , M. Robu & O.T. Moldovan (2012) Distribution patterns pf subsurface copepods and the impact of environmental parameters. Limnologica 42: 156164.

O.T. Moldovan , E. Levei , M. Banciu , H.L. Banciu , C. Marin , C. Pavelescu , T. Brad , M. Cîmpean , I. Meleg , S. Iepure & I. Povară (2011) Spatial distribution patterns of the hyporheic invertebrate communities in a polluted river in Romania. Hydrobiologia 669: 6382.

O.T. Moldova , I.N. Meleg , E. Levei & M. Terente (2013) A simple method for assessing biotic indicators and predicting biodiversity in the hyporheic zone of a river polluted with metals. Ecological Indicators 24: 412420.

M. Năpăruş & M. Kuntner (2012) A GIS model predicting global distributions of a lineage: a test case on hermit spiders (Nephilidae: Nephilengys). PLoS ONE 7: e30047. doi:10.1371/journal.pone.0030047

R.P. Neilson (1995) A model for predicting continental-scale vegetation distribution and water balance. Ecological Applications 5: 362385.

P.E. Osborne , G.M. Foody & S. Suárez-Seoane (2007) Non-stationarity and local approaches to modeling the distributions of wildlife. Diversity and Distributions 13: 313323.

T. Pipan , A. Blejec & A. Brancelj (2006) Multivariate analysis of copepod assemblages in epikarstic waters of some Slovenian caves. Hydrobiologia 559: 213223.

J.P. Rodríguez , L. Brotons , J. Bustamante & J. Seoane (2007) The application of predictive modelling of species distribution to biodiversity conservation. Diversity and Distributions 13: 243251.

S.I. Schmidt & H.S. Hahn (2012) What is groundwater and what does this mean to fauna? An opinion. Limnologica 42: 16.

T. Schmitt & L. Rákosy (2007) Changes of traditional agrarian landscapes and their conservation implications: a case study of butterflies in Romania. Diversity and Distributions 13: 855862.

H. Stein , C. Kellermann , S.I. Schmidt , H. Brielmann , C. Steube , S.E. Berkhoff , A. Fuchs , H.J. Hahn , B. Thulin & C. Griebler (2010) The potential use of fauna and bacteria as ecological indicators for the assessment of groundwater quality. Journal of Environmental Monitoring 12: 242254.

F. Stoch & D.M.P. Galassi (2010) Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia 653: 217234.

M. Vandewalle , F. de Bello , M.P. Berg , T. Bolger , S. Dolédec , F. Duds , C.K. Feld , R. Harrington , P.A. Harrison , S. Lavorel , da P.M. Silva , M. Moretti , J. Niemelä , P. Santos , T. Sattler , J.P. Sousa , M.T. Sykes , A.J. Vanbergen & B.A. Woodcock (2010) Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiversity and Conservation 19: 29212947.

C.J. Yates , J. Elith , A.M. Latimer , D. Le Maitre , G.F. Midgley , F.M. Schurr & A.G. West (2010) Projecting climate change impacts on species distributions in megadiverse South African Cape and Southwest Australian Floristic Regions: opportunities and challenges. Austral Ecology 35: 374391.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Environmental Conservation
  • ISSN: 0376-8929
  • EISSN: 1469-4387
  • URL: /core/journals/environmental-conservation
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
UNKNOWN
Supplementary Materials

Meleg et al. Supplementary Material
Figure

 Unknown (452 KB)
452 KB
WORD
Supplementary Materials

Meleg et al. Supplementary Material
Appendix

 Word (2.0 MB)
2.0 MB
EXCEL
Supplementary Materials

Meleg et al. Supplementary Material
Data

 Excel (81 KB)
81 KB
UNKNOWN
Supplementary Materials

Meleg et al. Supplementary Material
Figure

 Unknown (410 KB)
410 KB
UNKNOWN
Supplementary Materials

Meleg et al. Supplementary Material
Figure

 Unknown (681 KB)
681 KB
EXCEL
Supplementary Materials

Meleg et al. Supplementary Material
Data

 Excel (27 KB)
27 KB
UNKNOWN
Supplementary Materials

Meleg et al. Supplementary Material
Figure

 Unknown (445 KB)
445 KB
UNKNOWN
Supplementary Materials

Meleg et al. Supplementary Material
Figure

 Unknown (406 KB)
406 KB

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 13 *
Loading metrics...

Abstract views

Total abstract views: 156 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd June 2017. This data will be updated every 24 hours.