Skip to main content Accessibility help
×
×
Home

A review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland

  • J. M. BROUGHAN (a1), J. JUDGE (a2), E. ELY (a1), R. J. DELAHAY (a2), G. WILSON (a2), R. S. CLIFTON-HADLEY (a1), A. V. GOODCHILD (a1), H. BISHOP (a1), J. E. PARRY (a1) and S. H. DOWNS (a1)...
Summary

Bovine tuberculosis (bTB) is an important disease of cattle caused by infection with Mycobacterium bovis, a pathogen that may be extremely difficult to eradicate in the presence of a true wildlife reservoir. Our objective was to identify and review relevant literature and provide a succinct summary of current knowledge of risk factors for transmission of infection of cattle. Search strings were developed to identify publications from electronic databases to February 2015. Abstracts of 4255 papers identified were reviewed by three reviewers to determine whether the entire article was likely to contain relevant information. Risk factors could be broadly grouped as follows: animal (including nutrition and genetics), herd (including bTB and testing history), environment, wildlife and social factors. Many risk factors are inter-related and study designs often do not enable differentiation between cause and consequence of infection. Despite differences in study design and location, some risk factors are consistently identified, e.g. herd size, bTB history, presence of infected wildlife, whereas the evidence for others is less consistent and coherent, e.g. nutrition, local cattle movements. We have identified knowledge gaps where further research may result in an improved understanding of bTB transmission dynamics. The application of targeted, multifactorial disease control regimens that address a range of risk factors simultaneously is likely to be a key to effective, evidence-informed control strategies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A review of risk factors for bovine tuberculosis infection in cattle in the UK and Ireland
      Available formats
      ×
Copyright
Corresponding author
*Author for correspondence: Dr J. M. Broughan, Department of Epidemiological Sciences, Animal & Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK. (Email: jenny.broughan@gmail.com)
References
Hide All
1. O'Reilly, LM, Daborn, CJ. The epidemiology of Mycobacterium bovis infections in animals and man – a review. Tubercle and Lung Disease 1995; 76: 146.
2. Palmer, MV. Mycobacterium bovis: Characteristics of Wildlife reservoir hosts. Transboundary and Emerging Diseases 2013; 60 (Suppl. 1): 113.
3. Abernethy, DA, et al. Bovine tuberculosis trends in the UK and the Republic of Ireland, 1995–2010. Veterinary Record 2013; 172: 312.
4. Cosivi, O, et al. Epidemiology of Mycobacterium bovis infection in animals and humans, with particular reference to Africa. Revue Scientifique et Technique. 1995; 14: 733746.
5. Cousins, DV, Roberts, JL. Australia's campaign to eradicate bovine tuberculosis: the battle for freedom and beyond. Tuberculosis (Edinburgh) 2001; 81: 515.
6. Ramirez-Villaescusa, AM, et al. Risk factors for herd breakdown with bovine tuberculosis in 148 cattle herds in the south west of England. Preventive Veterinary Medicine 2010; 95: 224–30.
7. Allepuz, A, et al. Analysis of the spatial variation of Bovine tuberculosis disease risk in Spain (2006–2009). Preventive Veterinary Medicine 2011; 100: 4452.
8. Thrusfield, MV. Veterinary Epidemiology, 3rd edn. Wiley-Blackwell, 2007.
9. Coad, M, et al. Repeat tuberculin skin testing leads to desensitisation in naturally infected tuberculous cattle which is associated with elevated interleukin-10 and decreased interleukin-1 beta responses. Veterinary Research 2010; 41: 14.
10. Thom, ML, et al. The effect of tuberculin testing on the development of cell-mediated immune responses during mycobacterium bovis infection. Veterinary Immunology and Immunopathology 2006; 114: 2536.
11. Brotherstone, S, et al. Evidence of genetic resistance of cattle to infection with Mycobacterium bovis. Journal of Dairy Science 2010; 93: 12341242.
12. Bermingham, ML, et al. Genetics of tuberculosis in Irish Holstein-Friesian dairy herds. Journal of Dairy Science 2009; 92: 34473456.
13. Bermingham, ML, et al. Evidence for genetic variance in resistance to tuberculosis in Great Britain and Irish Holstein-Friesian populations. BMC Proceedings 2011; 5 (Suppl. 4): S15.
14. Richardson, IW, et al. Variance components for susceptibility to Mycobacterium bovis infection in dairy and beef cattle. Genetics Selection Evolution 2014; 46.
15. Allen, AR, et al. Bovine tuberculosis: the genetic basis of host susceptibility. Proceedings of the Royal Society of London, Series B: Biological Sciences 2010; 277: 27372745.
16. Morris, CA. A review of genetic resistance to disease in Bos taurus cattle. Veterinary Journal 2007; 174: 481491.
17. Driscoll, EE, et al. A preliminary study of genetic factors that influence susceptibility to bovine tuberculosis in the British cattle herd. PLoS ONE 2011; 6.
18. Bermingham, ML, et al. Genome-wide association study identifies novel loci associated with resistance to bovine tuberculosis. Heredity (Edinburgh) 2014; 112: 543551.
19. Song, Y, et al. Toll-like receptor 6 gene polymorphisms increase the risk of bovine tuberculosis in Chinese Holstein cattle. Acta histochemica 2014; 116: 11591162.
20. Butler, ST. Genetic control of reproduction in dairy cows. Reproduction, Fertility and Development 2013; 26: 111.
21. Bermingham, ML, et al. Genetic correlations between measures of Mycobacterium bovis infection and economically important traits in Irish Holstein-Friesian dairy cows. Journal of Dairy Science 2010; 93: 54135422.
22. Vordermeier, M, et al. The influence of cattle breed on susceptibility to bovine tuberculosis in Ethiopia. Comparative Immunology, Microbiology & Infectious Diseases 2012; 35: 227232.
23. Cadmus, SIB, et al. Risk factors associated with bovine tuberculosis in some selected herds in Nigeria. Tropical Animal Health and Production 2010; 42: 547549.
24. Ameni, G, Amenu, K, Tibbo, M. Bovine tuberculosis: prevalence and risk factor assessment in cattle and cattle owners in Wuchale-Jida District, Central Ethiopia. International Journal of Applied Research in Veterinary Medicine 2003; 1: 1726.
25. Dinka, H, Duressa, A. Prevalence of bovine tuberculosis in Arsi Zones of Oromia, Ethiopia. African Journal of Agricultural Research 2011; 6: 3858.
26. Ameni, G, Erkihun, A. Bovine tuberculosis an small-scale dairy farms in Adama Town, central Ethiopia, and farmer awareness of the disease. Revue Scientifique et Technique -Office International des Epizooties 2007; 26: 711719.
27. Thakar, A, et al. A study on the prevalence of bovine tuberculosis in farmed dairy cattle. Veterinary World 2010; 3: 409413.
28. Bovine HapMap Consortium. Genome-wide survey of SNP vaiation uncovers the genetic structure of cattle breeds. Science 2009; 324: 528532.
29. Alvarez, J, et al. Effect of paratuberculosis on the diagnosis of bovine tuberculosis in a cattle herd with a mixed infection using interferon-gamma detection assay. Veterinary Microbiology 2009; 135: 389393.
30. Bell, M, et al. Risk factors for culling in Holstein-Friesian dairy cows. Veterinary Record 2010; 167: 238240.
31. Brooks-Pollock, E, et al. Age-dependent patterns of bovine tuberculosis in cattle. Veterinary Research 2013; 44.
32. Bonsu, OA, Laing, E, Akanmori, BD. Prevalence of tuberculosis in cattle in the Dangme-West district of Ghana, public health implications. Acta Tropica 2000; 76: 914.
33. Teklu, A, et al. Tuberculous lesions not detected by routine abattoir inspection: the experience of the Hossana municipal abattoir, southern Ethiopia. Revue Scientifique et Technique – Office International des Epizooties. 2004; 23: 957964.
34. Singh, BB, et al. Prevalence of bovine tuberculosis and paratuberculosis in Punjab. Indian Veterinary Journal 2004; 81: 11951196.
35. Fikru, R, Bonnet, P, Moges, W. Prevalence of bovine tuberculosis in indigenous Zebu cattle under extensive farming system in Western Ethiopia. Bulletin of Animal Health and Production in Africa 2005; 53: 8588.
36. Inangolet, FO, et al. A cross-sectional study of bovine tuberculosis in the transhumant and agro-pastoral cattle herds in the border areas of Katakwi and Moroto districts, Uganda. Tropical Animal Health and Production 2008; 40: 501508.
37. Yacob, HT, Basu, A K, Guesh, N. Bovine pulmonary tuberculosis at Bahir Dar municipality abattoir, Ethiopia. Bulletin of Animal Health and Production in Africa 2008; 56: 223229.
38. Kazwala, RR, et al. Risk factors associated with the occurrence of bovine tuberculosis in cattle in the Southern Highlands of Tanzania. Veterinary Research Communications. 2001; 25: 609614.
39. Wood, PR, Jones, SL. BOVIGAM: an in vitro cellular diagnostic test for bovine tuberculosis. Tuberculosis (Edinburgh) 2001; 81: 147155.
40. Rahman, MA, Samad, MA. Prevalence of bovine tuberculosis and its effects on milk production in Red Chittagong cattle. Bangladesh Journal of Veterinary Medicine 2008; 6: 175178.
41. Garro, C, et al. Tuberculosis in calves: results of a prospective study. Redvet 2011; 12: 121108.
42. Menzies, FD, et al. A matched cohort study investigating the risk of Mycobacterium bovis infection in the progeny of infected cows. Veterinary Journal 2012; 194: 299302.
43. Bernard, F, et al. Tuberculosis and brucellosis prevalence survey on dairy cattle in Mbarara milk basin (Uganda). Preventive Veterinary Medicine 2005; 67: 267281.
44. Gumi, B, et al. Prevalence of bovine tuberculosis in pastoral cattle herds in the Oromia region, southern Ethiopia. Tropical Animal Health and Production . 2011; 43: 10811087.
45. Gezahegne, M, et al. Bovine tuberculosis and its associated risk factors in pastoral and agro-pastoral cattle herds of Afar Region, Northeast Ethiopia. Journal of Veterinary Medicine and Animal Health 2013; 5: 171179.
46. Gormley, E, et al. Identification of risk factors associated with disclosure of false positive bovine tuberculosis reactors using the gamma-interferon (IFN gamma) assay. Veterinary Research 2013; 44.
47. Biratu, N, et al. Epidemiology of bovine tuberculosis in Butajira, Southern Ethiopia: a cross-sectional abattoir-based study. African Journal of Microbiology Research 2014; 8: 31123117.
48. Moiane, I, et al. Prevalence of bovine tuberculosis and risk factor assessment in cattle in rural livestock areas of Govuro district in the southeast of Mozambique. PLoS ONE 2014; 9: e91527.
49. Wolfe, DM, et al. The risk of a positive test for bovine tuberculosis in cattle purchased from herds with and without a recent history of bovine tuberculosis in Ireland. Preventive Veterinary Medicine 2009; 92: 99105.
50. Humblet, MF, Boschiroli, ML, Saegerman, C. Classification of worldwide bovine tuberculosis risk factors in cattle: a stratified approach. Veterinary Research 2009; 40: 50.
51. Pollock, JM, Neill, SD. Mycobacterium bovis infection and tuberculosis in cattle. Veterinary Journal 2002; 163: 115127.
52. Field, CJ, Johnson, IR. Nutrients and their role in host resistance to infection. Journal of Leukocyte Biology 2002; 71: 1632.
53. Schaible, UE, Kaufmann, SH. Malnutrition and infection: complex mechanisms and global impacts. PLoS Medicine 2007; 4: e115.
54. van Crevel, R, et al. Decreased plasma leptin concentrations in tuberculosis patients are associated with wasting and inflammation. Journal of Clinical Endocrinology and Metabolism 2002; 87: 758763.
55. Downs, SH, et al. Trace micro-nutrients may affect susceptibility to bovine tuberculosis in cattle. Preventive Veterinary Medicine 2008; 87: 311326.
56. Doherty, ML, et al. Effect of dietary restriction on cell-mediated immune responses in cattle infected with Mycobacterium bovis. Veterinary Immunology and Immunopathology 1996; 49: 307320.
57. Costello, E, et al. A study of cattle-to-cattle transmission of Mycobacterium bovis infection. Veterinary Journal 1998; 155: 245250.
58. White, PCL, et al. Control of bovine tuberculosis in British livestock: there is no ‘silver bullet’. Trends in Microbiology 2008; 16: 420427.
59. Sauter, CM, Morris, RS. Behavioural studies on the potential for direct transmission of tuberculosis from feral ferrets (Mustela furo) and possums (Trichosurus vulpecula) to farmed livestock. New Zealand Veterinary Journal 1995; 43: 294300.
60. MacKay, PC, Wood-Gush, DCM. Exploration and fear in calves newly turned out to pasture. Applied Animal Behavioural Science 1985; 14: 392393.
61. Bohm, M, Hutchings, MR, White, PC. Contact networks in a wildlife-livestock host community: identifying high-risk individuals in the transmission of bovine TB among badgers and cattle. PLoS ONE 2009; 4: e5016.
62. Sauter, CM, Morris, RS. Dominance hierarchies in cattle and red deer (Cervus elaphus): their possible relationship to the transmission of bovine tuberculosis. New Zealand Veterinary Journal 1995; 43: 301305.
63. Flynn, RJ, et al. Co-infection of cattle with Fasciola hepatica and Mycobacterium bovis – immunological consequences. Transboundary and Emerging Diseases 2009; 56: 269274.
64. Jolles, AE, et al. Interactions between macroparasites and microparasites drive infection patterns in free-ranging African buffalo. Ecology 2008; 89: 22392250.
65. Ezenwa, VO, et al. Hidden consequences of living in a wormy world: nematode-induced immune suppression facilitates tuberculosis invasion in African buffalo. American Naturalist 2010; 176: 613624.
66. de la Rua-Domenech, R, et al. Ante mortem diagnosis of tuberculosis in cattle: a review of the tuberculin tests, gamma-interferon assay and other ancillary diagnostic techniques. Research in Veterinary Science 2006; 81: 190210.
67. Morrison, W, et al. Pathogenesis and diagnosis of infections with Mycobacterium bovis in cattlte. Independant Scientific Group on Cattle TB. Veterinary Record 2000; 146: 236242.
68. Watson, CW. An investigation into the possible relationships between BVD and TB in practice. Cattle Practice 2002; 10: 101103.
69. Kao, RR, et al. Mycobacterium bovis shedding patterns from experimentally infected calves and the effect of concurrent infection with bovine viral diarrhoea virus. Journal of the Royal Society Interface 2007; 4: 545551.
70. Johnston, WT, et al. Herd-level risk factors of bovine tuberculosis in England and Wales after the 2001 foot-and-mouth disease epidemic. International Journal of Infectious Diseases 2011; 15: e833–e40.
71. Johnston, WT, et al. Herd-level risk factors associated with tuberculosis breakdowns among cattle herds in England before the 2001 foot-and-mouth disease epidemic. Biology Letters 2005; 1: 5356.
72. Godfray, HCJ, et al. A restatement of the natural science evidence base relevant to the control of bovine tuberculosis in Great Britain. Proceedings of the Royal Society of London, Series B: Biological Sciences 2013; 280: 20131634.
73. Skuce, RA, Allen, AR, McDowell, SW. Herd-level risk factors for bovine tuberculosis: a literature review. Veterinary Medicine International 2012; 2012: 621210.
74. More, SJ, Good, M. Understanding and managing bTB risk: perspectives from Ireland. Veterinary Microbiology 2015; 176: 209218.
75. Vial, F, et al. Bovine tuberculosis risk factors for British herds before and after the 2001 foot-and-mouth epidemic: what have we learned from the TB99 and CCS2005 studies? Transboundary and Emerging Diseases 2015; 62: 505515.
76. Conlan, AJ, et al. Estimating the hidden burden of bovine tuberculosis in Great Britain. PLoS Computational Biology 2012; 8: e1002730.
77. Omer, MK, et al. A cross-sectional study of bovine tuberculosis in dairy farms in Asmara, Eritrea. Tropical Animal Health and Production 2001; 33: 295303.
78. Marangon, S, et al. A case-control study on bovine tuberculosis in the Veneto Region (Italy). Preventive Veterinary Medicine 1998; 34: 8795.
79. Garro, C, et al. Risk factors for bovine tuberculosis in dairy herds in Cordoba and Santa Fe provinces. Revista Argentina de Produccion Animal 2010; 30: 167178.
80. Goodchild, AV, Clifton-Hadley, RS. Cattle-to-cattle transmission of Mycobacterium bovis. Tuberculosis 2001; 81: 2341.
81. O'Mahony, DT. Badger-cattle interactions in the rural environment: Implications for bovine tuberculosis transmission. Northern Ireland, 2014.
82. Doyle, LP, et al. Bovine tuberculosis in Northern Ireland: risk factors associated with time from post-outbreak test to subsequent herd breakdown. Preventive Veterinary Medicine 2014; 116: 4755.
83. Gallagher, MJ, et al. Comparison of bovine tuberculosis recurrence in Irish herds between 1998 and 2008. Preventive Veterinary Medicine 2013; 111: 237244.
84. APHA. Bovine tuberculosis: Infection status in cattle in England: Annual surveillance report for the period January to December 2014. 2015.
85. Alvarez, J, et al. Risk factors associated with negative in-vivo diagnostic results in bovine tuberculosis-infected cattle in Spain. BMC Veterinary Research 2014; 10.
86. O'Hagan, MJ, et al. Risk factors for visible lesions or positive laboratory tests in bovine tuberculosis reactor cattle in Northern Ireland. Preventive Veterinary Medicine 2015; 120: 283290.
87. Downs, SH, et al. Differences in the response to diagnostic tests for bovine tuberculosis between dairy cattle and non-dairy cattle naturally exposed to Mycobacterium bovis in Great Britain. Veterinary Journal. Accepted. doi:10.1016/j.tvjl.2016.06.010.
88. Griffin, JM, et al. A case-control study on the association of selected risk factors with the occurrence of bovine tuberculosis in the Republic of Ireland. Preventive Veterinary Medicine 1996; 27: 7587.
89. Denny, GO, Wilesmith, JW. Bovine tuberculosis in Northern Ireland: a case-control study of herd risk factors. Veterinary Record 1999; 144: 305310.
90. Mill, AC, et al. Farm-scale risk factors for bovine tuberculosis incidence in cattle herds during the Randomized Badger Culling Trial. Epidemiology and Infection 2012; 140: 219–30.
91. Vial, F, Johnston, WT, Donnelly, CA. Local cattle and badger populations affect the risk of confirmed tuberculosis in British cattle herds. PLoS ONE 2011 6: e18058.
92. Guta, S, et al. Risk factors for bovine tuberculosis persistence in beef herds of southern and central Spain. Preventive Veterinary Medicine 2014; 115: 173180.
93. Reilly, LA, Courtenay, O. Husbandry practices, badger sett density and habitat composition as risk factors for transient and persistent bovine tuberculosis on UK cattle farms. Preventive Veterinary Medicine 2007; 80: 129142.
94. Griffin, JM, Dolan, LA. The role of cattle-to-cattle transmission of Mycobacterium bovis in the epidemiology of tuberculosis in cattle in the Republic of Ireland - a review. Irish Veterinary Journal 1995; 48: 228234.
95. Griffin, JM, et al. The association of cattle husbandry practices, environmental factors and farmer characteristics with the occurrence of chronic bovine tuberculosis in dairy herds in the Republic of Ireland. Preventive Veterinary Medicine 1993; 17: 145160.
96. White, PW, et al. The importance of ‘neighbourhood’ in the persistence of bovine tuberculosis in Irish cattle herds. Preventive Veterinary Medicine 2013; 110: 346355.
97. Carrique-Mas, JJ, Medley, GF, Green, LE. Risks for bovine tuberculosis in British cattle farms restocked after the foot and mouth disease epidemic of 2001. Preventive Veterinary Medicine 2008; 84: 8593.
98. Ramirez-Villaescusa, AM, et al. Herd and individual animal risks associated with bovine tuberculosis skin test positivity in cattle in herds in south west England. Preventive Veterinary Medicine 2009; 92: 188198.
99. Gilbert, M, et al. Cattle movements and bovine tuberculosis in Great Britain. Nature (London) 2005; 435: 491496.
100. White, PCL, Benhin, JKA. Factors influencing the incidence and scale of bovine tuberculosis in cattle in southwest England. Preventive Veterinary Medicine 2004; 63: 17.
101. Ward, AI, Tolhurst, BA, Delahay, RJ. Farm husbandry and the risks of disease transmission between wild and domestic mammals: a brief review focusing on bovine tuberculosis in badgers and cattle. Animal Science 2006; 82: 767773.
102. Gopal, R, et al. Introduction of bovine tuberculosis to north-east England by bought-in cattle. Veterinary Record 2006; 159: 265271.
103. Humblet, MF, et al. New assessment of bovine tuberculosis risk factors in Belgium based on nationwide molecular epidemiology. Journal of Clinical Microbiology 2010; 48: 28022808.
104. Clegg, TA, et al. Potential infection-control benefit for Ireland from pre-movement testing of cattle for tuberculosis. Preventive Veterinary Medicine 2008; 84: 94111.
105. Griffin, JM. The role of bought-in cattle in herd breakdowns due to tuberculosis in part of County Cavan during 1989. Irish Veterinary Journal 1993; 46: 143148.
106. Gates, MC, Volkova, VV, Woolhouse, MEJ. Risk factors for bovine tuberculosis in low incidence regions related to the movements of cattle. BMC Veterinary Research 2013; 9(225).
107. Abernethy, DA, Pfeiffer, DU, Neill, SD (eds). Case control study examining the role of livestock markets in the transmission of bovine tuberculosis. Proceedings of Society for Veterinary Epidemiology and Preventive Medicine, 2000. University of Edinburgh.
108. Steger, G. Bovine tuberculosis at cattle shows. Tierarzliche Umschau 1970; 22: 416421.
109. Elias, K, et al. Status of bovine tuberculosis in Addis Ababa dairy farms. Revue Scientifique et Technique – Office International des Epizooties 2008; 27: 915923.
110. Asseged, B, et al. Bovine tuberculosis: a cross sectional and epidemiological study in and around Addis Ababa. Bulletin of Animal Health and Production in Africa 2000; 48: 7180.
111. Regassa, A, et al. A cross-sectional study on bovine tuberculosis in Hawassa town and its surroundings, Southern Ethiopia. Tropical Animal Health and Production 2010; 42: 915920.
112. Munyeme, M, et al. Risk factors associated with bovine tuberculosis in traditional cattle of the livestock/wildlife interface areas in the Kafue basin of Zambia. Preventive Veterinary Medicine 2008; 85: 317328.
113. Khan, IA, Khan, A. Prevalence and risk factors of bovine tuberculosis in Nili Ravi buffaloes in the Punjab, Pakistan. Italian Journal of Animal Science 2007; 6: 817820.
114. Christiansen, KH, Clifton-Hadley, RS. Farm management risk factors for bovine tuberculosis. Veterinary Laboratories Agency, Addlestone. Surrey, UK: Report to the Milk Development Council, 2000.
115. Cowie, CE, et al. Risk factors for the detected presence of Mycobacterium bovis in cattle in south central Spain. European Journal of Wildlife Research 2014; 60: 113123.
116. Winkler, B, Mathews, F. Environmental risk factors associated with bovine tuberculosis among cattle in high-risk areas. Biology Letters 2015; 11.
117. Cowie, CE, et al. Shared risk factors for multiple livestock diseases: a case study of bovine tuberculosis and brucellosis. Research in Veterinary Science 2014; 97: 491497.
118. Lanszki, J, et al. Feeding habits and trophic niche overlap in a Carnivora community of Hungary. Acta Theriologica 1999; 44: 429442.
119. Garnett, BT, Delahay, RJ, Roper, TJ. Use of cattle farm resources by badgers (Meles meles) and risk of bovine tuberculosis (Mycobacterium bovis) transmission to cattle. Proceedings of the Royal Society of London, Series B: Biological Sciences 2002; 269: 14871491.
120. Defra. An experiment to assess the cost-effectiveness of farm husbandry manipulations to reduce risks associated with farmyard contact between badgers and cattle. London: 2010.
121. Griffin, JM, Hahesy, T. Analysis of epidemiology reports on 3975 herd breakdowns in ten DVO regions during 1987–90. Irish Veterinary Journal 1992; 45: 126.
122. Broughan, JM, et al. Mycobacterium bovis infections in domesticated non-bovine mammalian species. Part 1: Review of epidemiology and laboratory submissions in Great Britain 2004–2010. Veterinary Journal 2013; 198: 339345.
123. Karolemeas, K, et al. Predicting prolonged bovine tuberculosis breakdowns in Great Britain as an aid to control. Preventive Veterinary Medicine 2010; 97: 183190.
124. Karolemeas, K, et al. Recurrence of bovine tuberculosis breakdowns in Great Britain: risk factors and prediction. Preventive Veterinary Medicine 2011; 102: 2229.
125. Olea-Popelka, FJ, et al. Breakdown severity during a bovine tuberculosis episode as a predictor of future herd breakdowns in Ireland. Preventive Veterinary Medicine 2004; 63: 163172.
126. Abernethy, DA, et al. Shifting the TB-control paradigm: an epidemiological critique of the bovine tuberculosis eradication scheme. Alban, L, Kelly, LA, eds, 2010, pp. 166–173.
127. Dawson, KL, et al. Recurrent bovine tuberculosis in New Zealand cattle and deer herds, 2006–2010. Epidemiology and Infection 2014; 142: 20652074.
128. Green, L, Medley, G. Cattle to cattle transmission of bovine tuberculosis: risk factors and dynamics. Cattle Practice 2008; 16: 116121.
129. Good, M, et al. Impact of the national full herd depopulation policy on the recurrence of bovine tuberculosis in Irish herds, 2003 to 2005. Veterinary Record 2011; 169: 581.
130. Wolfe, DM, et al. From explanation to prediction: A model for recurrent bovine tuberculosis in Irish cattle herds. Preventive Veterinary Medicine 2010; 94: 170177.
131. Green, LE, et al. Patterns of delayed detection and persistence of bovine tuberculosis in confirmed and unconfirmed herd breakdowns in cattle and cattle herds in Great Britain. Preventive Veterinary Medicine 2012; 106: 266274.
132. Berrian, AM, et al. Risk of bovine tuberculosis for cattle sold out from herds during 2005 in Ireland. Veterinary Record 2012; 170: 620.
133. Clegg, TA, et al. Shorter-term risk of Mycobacterium bovis in Irish cattle following an inconclusive diagnosis to the single intradermal comparative tuberculin test. Preventive Veterinary Medicine 2011; 102: 255264.
134. Clegg, TA, et al. Longer-term risk of Mycobacterium bovis in Irish cattle following an inconclusive diagnosis to the single intradermal comparative tuberculin test. Preventive Veterinary Medicine 2011; 100: 147154.
135. EFSA. EFSA Panel on Animal Health and Welfare (AHAW); Scientific Opinion on the use of a gamma interferon test for the diagnosis of bovine tuberculosis EFSA Journal 2012; 10: 2975.
136. Monaghan, ML, et al. The tuberculin test. Cattle Practice 2005; 13: 337345.
137. Schiller, I, et al. Comparison of tuberculin activity using the interferon-gamma assay for the diagnosis of bovine tuberculosis. Veterinary Record 2010; 167: 322326.
138. Downs, SH, et al. Tuberculin manufacturing source and breakdown incidence rate of bovine tuberculosis in British cattle, 2005–2009. Veterinary Record 2013; 172: 98.
139. Ngandolo, BNR, et al. Comparative assessment of fluorescence polarization and tuberculin skin testing for the diagnosis of bovine tuberculosis in Chadian cattle. Preventive Veterinary Medicine 2009; 89: 8189.
140. Meskell, P, Devitt, C, More, SJ. Challenges to quality testing for bovine tuberculosis in Ireland; perspectives from major stakeholders. Veterinary Record 2013; 173: 94.
141. Humblet, MF, et al. Monitoring of the intra-dermal tuberculosis skin test performed by Belgian field practitioners. Research in Veterinary Science 2011; 91: 199207.
142. Gormley, E, et al. Diagnosis of Mycobacterium bovis infection in cattle by use of the gamma-interferon (Bovigam) assay. Veterinary Microbiology 2006; 112: 171179.
143. Shitaye, JE, Tsegaye, W, Pavlik, I. Bovine tuberculosis infection in animal and human populations in Ethiopia: a review. Veterinarni Medicina 2007; 52: 317332.
144. Monaghan, ML, et al. Sensitisation of cattle to bovine and avian tuberculins with Mycobacterium cookii. Veterinary Record 1991; 129: 383.
145. Kerr, WR, Lamont, HG, McGirr, JL. Studies on tuberculin sensitivity in the bovine. Veterinary Record 1946; 58: 443453.
146. Ryan, TJ, Buddle, BM, De Lisle, GW. An evaluation of the gamma interferon test for detecting bovine tuberculosis in cattle 8 to 28 days after tuberculin skin testing. Research in Veterinary Science 2000; 69: 5761.
147. Rangen, SA, et al. Is the gamma interferon assay in cattle influenced by multiple tuberculin injections? Canadian Veterinary Journal/Revue Veterinaire Canadienne. 2009; 50: 270274.
148. Huitema, H. The eradication of bovine tuberculosis in cattle in the Netherlands and the significance of man as a source of infection for cattle. Selected Papers of the Royal Netherlands Tuberculosis Association 1969; 12: 6267.
149. Buddle, BM, et al. Experimental Mycobacterium bovis infection of cattle: effect of dose of M. bovis and pregnancy on immune responses and distribution of lesions. New Zealand Veterinary Journal 1994: 167172.
150. Amos, W, et al. Genetic predisposition to pass the standard SICCT test for bovine tuberculosis in British cattle. PLoS ONE 2013; 8: e58245.
151. Wright, DM, et al. Detectability of bovine TB using the tuberculin skin test does not vary significantly according to pathogen genotype within Northern Ireland. Infection, Genetics and Evolution 2013; 19: 1522.
152. Amadori, M, et al. Diagnosis of Mycobacterium bovis infection in calves sensitized by mycobacteria of the avium/intracellulare group. Journal of Veterinary Medicine, Series B: Infectious Diseases and Veterinary Public Health 2002; 49: 8996.
153. Hope, JC, et al. Exposure to Mycobacterium avium induces low-level protection from Mycobacterium bovis infection but compromises diagnosis of disease in cattle. Clinical and Experimental Immunology 2005; 141: 432439.
154. Barry, C, et al. The effect of Mycobacterium avium complex infections on routine Mycobacterium bovis diagnostic tests. Veterinary Medicine International 2011; 2011: 145092.
155. Michel, AL. Mycobacterium fortuitum infection interference with Mycobacterium bovis diagnostics: natural infection cases and a pilot experimental infection. Journal of Veterinary Diagnostic Investigation 2008; 20: 501503.
156. Waters, WR, et al. Immune responses to defined antigens of Mycobacterium bovis in cattle experimentally infected with Mycobacterium kansasii. Clinical and Vaccine Immunology 2006; 13: 611619.
157. Waters, WR, et al. Immune responses in cattle inoculated with Mycobacterium bovis, Mycobacterium tuberculosis, or Mycobacterium kansasii. Clinical and Vaccine Immunology 2010; 17: 247252.
158. Vordermeier, HM, et al. Assessment of cross-re activity between Mycobacterium bovis and M. kansasii ESAT-6 and CFP-10 at the T-Cell epitope level. Clinical and Vaccine Immunology 2007; 14: 12031209.
159. Corner, LA, Pearson, CW. Response of cattle to inoculation with atypical mycobacteria isolated from soil. Australian Veterinary Journal 1979; 55: 69.
160. Thom, M, et al. Consequence of prior exposure to environmental mycobacteria on BCG vaccination and diagnosis of tuberculosis infection. Tuberculosis 2008; 88: 324334.
161. Howard, CJ, et al. Exposure to Mycobacterium avium primes the immune system of calves for vaccination with Mycobacterium bovis BCG. Clinical & Experimental Immunology 2002; 130: 190195.
162. Flynn, RJ, et al. Experimental Fasciola hepatica infection alters responses to tests used for diagnosis of bovine tuberculosis. Infection and Immunity 2007; 75: 13731381.
163. Ameni, G, Medhin, G. Effect of gastro-intestinal parasitosis on tuberculin test for the diagnosis of bovine tuberculosis. Journal of Applied Animal Research 2000; 18: 221224.
164. McDonald, WL, et al. Evaluation of diagnostic tests for Johne's disease in young cattle. Australian Veterinary Journal 1999; 77: 113119.
165. Marassi, CD, et al. The use of MPB70 and MPB83 to distinguish between bovine tuberculosis and paratuberculosis. Comparative Immunology Microbiology and Infectious Diseases 2010; 33: 485489.
166. Brito, BP, et al. Association between caudal fold tuberculin test responses and results of an ELISA for Mycobacterium avium subsp. paratuberculosis and mycobacterial culture of feces in tuberculosis-free dairy herds. Journal of the American Veterinary Medical Association 2014; 244: 582587.
167. Aranaz, A, et al. Assessment of diagnostic tools for eradication of bovine tuberculosis in cattle co-infected with Mycobacterium bovis and M. avium subsp. paratuberculosis. Veterinary Research 2006; 37: 593606.
168. Seva, J, et al. Evaluation of the single cervical skin test and interferon gamma responses to detect Mycobacterium bovis infected cattle in a herd co-infected with Mycobacterium avium subsp paratuberculosis. Veterinary Microbiology 2014; 171: 139146.
169. Muskens, J, et al. Evaluation of the long-term immune response in cattle after vaccination against paratuberculosis in two Dutch dairy herds. Veterinary Microbiology. 2002; 86: 269278.
170. Thomsen, VT, et al. Characterization of the long-term immune response to vaccination against Mycobacterium avium subsp paratuberculosis in Danish dairy cows. Veterinary Immunology and Immunopathology 2012; 145: 316322.
171. Kohler, H, et al. Immune reactions in cattle after immunization with a Mycobacterium paratuberculosis vaccine and implications for the diagnosis of M. paratuberculosis and M. bovis infections. Journal of Veterinary Medicine, Series B: Infectious Diseases and Veterinary Public Health 2001; 48: 185195.
172. Coad, M, et al. The consequences of vaccination with the Johne's disease vaccine, Gudair, on diagnosis of bovine tuberculosis. Veterinary Record 2013; 172.
173. Garrido, JM, et al. Paratuberculosis vaccination causes only limited cross-reactivity in the skin test for diagnosis of bovine tuberculosis. PLoS ONE 2013; 8.
174. Tewari, D, et al. Mycobacterium avium subsp paratuberculosis antibody response, fecal shedding, and antibody cross-reactivity to Mycobacterium bovis in M. avium subsp paratuberculosis-infected cattle herds vaccinated against Johne's Disease. Clinical and Vaccine Immunology 2014; 21: 698703.
175. Courtenay, O, Wellington, EMH. Mycobacterium bovis in the environment: towards our understanding of its biology. Cattle Practice 2008; 16: 122126.
176. Williams, RS, Hoy, WA. The viability of B. tuberculosis (bovinus) on pasture land, in stored faeces and in liquid manure. Journal of Hygiene (London) 1930; 30: 413419.
177. Jackson, R, deLisle, GW, Morris, RS. A study of the environmental survival of Mycobacterium bovis on a farm in New Zealand. New Zealand Veterinary Journal 1995; 43: 346352.
178. Fine, AE, et al. A study of the persistence of Mycobacterium bovis in the environment under natural weather conditions in Michigan, USA. Veterinary Medicine International. 2011; 2011: Article ID 765430.
179. Duffield, BJ, Young, DA. Survival of Mycobacterium bovis in defined environmental conditions. Veterinary Microbiology 1985; 10: 193197.
180. Vera, A, Volkovsky, G. Survival of Mycobacterium bovis in cattle faeces at different times of the year in Cuba. Revista Cubana de Ciencias Veterinarias. 1982; 13: 6573.
181. Barron, MC, et al. Longevity of Mycobacterium bovis in brushtail possum (Trichosurus vulpecula) carcasses, and contact rates between possums and carcasses. New Zealand Veterinary Journal 2011; 59: 209217.
182. Palmer, MV, Whipple, DL. Survival of Mycobacterium bovis on feedstuffs commonly used as supplemental feed for white-tailed deer (Odocoileus virginianus). Journal of Wildlife Diseases 2006; 42: 853858.
183. Hahesy, T, et al. Cattle manure and the spread of bovine tuberculosis. Irish Veterinary Journal 1992; 45: 122123.
184. McCallan, L, McNair, J, Skuce, R. A review of the potential role of cattle slurry in the spread of bovine tuberculosis. Agri-food and Biosciences Institute, Northern Ireland, 2014.
185. Scanlon, MP, Quinn, PJ. The survival of Mycobacterium bovis in sterilized cattle slurry and its relevance to the persistence of this pathogen in the environment. Irish Veterinary Journal 2000; 53: 412415.
186. Gannon, BW, Hayes, CM, Roe, JM. Survival rate of airborne Mycobacterium bovis. Research in Veterinary Science 2007; 82: 169172.
187. Young, JS, Gormley, E, Wellington, EM. Molecular detection of Mycobacterium bovis and Mycobacterium bovis BCG (Pasteur) in soil. Applied and Environmental Microbiology 2005; 71: 19461952.
188. Little, TW, et al. Bovine tuberculosis in domestic and wild mammals in an area of Dorset. II. The badger population, its ecology and tuberculosis status. Journal of Hygiene (London) 1982; 89: 211224.
189. Witmer, G, et al. Epizootiologic survey of Mycobacterium bovis in wildlife and farm environments in northern Michigan. Journal of Wildlife Diseases 2010; 46: 368378.
190. Fine, AE, et al. An effort to isolate Mycobacterium bovis from environmental substrates during investigations of bovine tuberculosis transmission sites (cattle farms and wildlife areas) in Michigan, USA. ISRN Veterinary Science 2011; 2011: Article ID 787181.
191. Pillai, SD, et al. Failure to identify non-bovine reservoirs of Mycobacterium bovis in a region with a history of infected dairy-cattle herds. Preventive Veterinary Medicine 2000; 43: 5362.
192. O'Brien, DJ, et al. Managing the wildlife reservoir of Mycobacterium bovis: the Michigan, USA, experience. Veterinary Microbiology 2006; 112: 313323.
193. Jenkins, HE, Woodroffe, R, Donnelly, CA. The effects of annual widespread badger culls on cattle tuberculosis following the cessation of culling. International Journal of Infectious Diseases 2008; 12: 457465.
194. Goodchild, AV, et al. Geographical association between the genotype of bovine tuberculosis in found dead badgers and in cattle herds. Veterinary Record 2012; 170: 259.
195. Murphy, D, et al. The prevalence and distribution of Mycobacterium bovis infection in European badgers (Meles meles) as determined by enhanced post mortem examination and bacteriological culture. Research in Veterinary Science 2010; 88: 15.
196. Sweeney, FP, et al. Environmental monitoring of Mycobacterium bovis in badger feces and badger sett soil by real-time PCR, as confirmed by immunofluorescence, immunocapture, and cultivation. Applied and Environmental Microbiology 2007; 73: 74717473.
197. Parsons, LM, et al. Rapid and simple approach for identification of Mycobacterium tuberculosis complex isolates by PCR-based genomic deletion analysis. Journal of Clinical Microbiology 2002; 40: 23392345.
198. Wint, GRW, et al. Mapping bovine tuberculosis in Great Britain using environmental data. Trends in Microbiology 2002; 10: 441444.
199. Hahesy, T, Kelleher, D L, Doherty, J. An investigation of a possible association between the occurrence of bovine tuberculosis and weather variables. Irish Veterinary Journal 1992; 45: 127128.
200. Woodroffe, R, et al. Culling and cattle controls influence tuberculosis risk for badgers. Proceedings of the National Academy of Sciences USA 2006; 103: 1471314717.
201. Hancox, M. Bovine TB and drought. Veterinary Record 1988; 122: 214.
202. Cleaveland, S, et al. Mycobacterium bovis in rural Tanzania: risk factors for infection in human and cattle populations. Tuberculosis 2007; 87: 3043.
203. Balako, G, et al. Prevalence of bovine tuberculosis in pastoral cattle herds in the Oromia region, southern Ethiopia. Tropical Animal Health and Production 2011; 43: 10811087.
204. Tadeusz, H, Bouazza, K. Control of bovine tuberculosis in the Kenitra district, Morocco; results, reflections and suggestions. Maghreb Veterinaire 1984; 1: 1316.
205. Mathews, F, et al. Bovine tuberculosis in cattle: reduced risk on wildlife-friendly farms. Biology Letters 2006; 2: 271274.
206. Menzies, FD, et al. A comparison of badger activity in two areas of high and low bovine tuberculosis incidence of Northern Ireland. Veterinary Microbiology 2011; 151: 112119.
207. Kaneene, JB, et al. Environmental and farm management factors associated with tuberculosis on cattle farms in northeastern Michigan. Journal of the American Veterinary Medical Association 2002; 221: 837842.
208. Kelly, GE, More, SJ. Spatial clustering of TB-infected cattle herds prior to and following proactive badger removal. Epidemiology and Infection 2011; 139: 12201229.
209. White, PCL, Brown, JA, Harris, S. Badgers (Meles meles), cattle and bovine tuberculosis (Mycobacterium bovis): a hypothesis to explain the influence of habitat on the risk of disease transmission in southwest England. Proceedings of the Royal Society of London, Series B: Biological Sciences 1993; 253: 277284.
210. Newton-Cross, G, White, PCL, Harris, S. Modelling the distribution of badgers Meles meles: comparing predictions from field-based and remotely derived habitat data. Mammal Review 2007; 37: 5470.
211. Neal, E. The Natural History of Badgers. Beckenham, Kent: Croom Helm, 1986.
212. Hammond, RF, McGrath, G, Martin, SW. Irish soil and land-use classifications as predictors of numbers of badgers and badger setts. Preventive Veterinary Medicine 2001; 51: 137148.
213. Walter, WD, et al. Linking bovine tuberculosis on cattle farms to white-tailed deer and environmental variables using Bayesian hierarchical analysis. PLoS ONE 2014; 9: e90925.
214. Delahay, RJ, et al. Distribution of badger latrines in a high-density population: habitat selection and implications for the transmission of bovine tuberculosis to cattle. Journal of Zoology 2007; 272: 311320.
215. Hutchings, MR, Service, KM, Harris, S. Is population density correlated with faecal and urine scent marking in European badgers (Meles meles) in the UK? Mammalian Biology 2002; 67: 286293.
216. Kazoora, HB, et al. Prevalence of Mycobacterium bovis skin positivity and associated risk factors in cattle from Western Uganda. Tropical Animal Health and Production 2014; 46: 13831390.
217. Fischer, OA, et al. Earthworms (Oligochaeta, Lumbricidae) and mycobacteria. Veterinary Microbiology 2003; 91: 325338.
218. Wilson, G, et al. Scientific review on Tuberculosis in wildlife in the EU. EFSA, 2009.
219. Blagodarnyi, YA, et al. The role of ticks in the transmission of the mycobacteria of tuberculosis. Veterinariya 1971; 7: 4849.
220. Torres, L, et al. Identification of microorganisms in partially fed female horn flies, Haematobia irritans. Parasitology Research 2012; 111: 13911395.
221. Taylor, SJ, et al. Infection of Acanthamoeba castellanii with Mycobacterium bovis and M-bovis BCG and survival of M-bovis within the amoebae. Applied and Environmental Microbiology 2003; 69: 43164319.
222. Mardare, C, Delahay, RJ, Dale, JW. Environmental amoebae do not support the long-term survival of virulent mycobacteria. Journal of Applied Microbiology 2013; 114: 13881394.
223. Haydon, DT, et al. Identifying reservoirs of infection: a conceptual and practical challenge. Emerging Infectious Diseases 2002 (http://www.cdc.gov/ncidod/EID/vol8no12/01-0317.htm).
224. Donnelly, CA, et al. Positive and negative effects of widespread badger culling on tuberculosis in cattle. Nature (London) 2006; 439: 843846.
225. Donnelly, CA, et al. Impact of localized badger culling on tuberculosis incidence in British cattle. Nature (London) 2003; 426: 834837.
226. Griffin, JM, et al. Tuberculosis in cattle: the results of the four-area project. Irish Veterinary Journal 2005; 58: 629636.
227. Bourne, J. Bovine TB: the scientific evidence a science base for a sustainable policy to control TB in cattle, an epidemiological investigation in bovine tuberculosis. 2007.
228. Smith, GC, Cheeseman, CL. TB policy and the ISG's findings. Veterinary Record 2007; 161: 535.
229. Donnelly, CA, Nouvellet, P. The contribution of badgers to confirmed tuberculosis in cattle in high-incidence areas in England. PLoS Currents 2013; 5.
230. Martin, SW, et al. The association between the bovine tuberculosis status of herds in the East Offaly Project Area Irish Republic, and the distance to badger setts, 1988–1993. Preventive Veterinary Medicine 1997; 31: 113125.
231. Clifton-Hadley, RS, Wilesmith, JW, Stuart, FA. Mycobacterium bovis in the European badger (Meles meles): epidemiological findings in tuberculous badgers from a naturally infected population. Epidemiology and Infection 1993; 111: 919.
232. Courtenay, O, et al. Is Mycobacterium bovis in the environment important for the persistence of bovine tuberculosis? Biology Letters 2006; 2: 460462.
233. Wilesmith, JW, et al. Tuberculosis in East Sussex. I. Outbreaks of tuberculosis in cattle herds (1964–1984). Journal of Hygiene 1986; 97: 110.
234. Phillips, CJC, et al. The transmission of Mycobacterium bovis infection to cattle. Research in Veterinary Science 2003; 74: 115.
235. Benham, PF, Broom, DM. Interactions between cattle and badgers at pasture with reference to bovine tuberculosis transmission. British Veterinary Journal 1989; 145: 226241.
236. Mullen, EM, et al. Foraging Eurasian badgers Meles meles and the presence of cattle in pastures. Do badgers avoid cattle? Applied Animal Behaviour Science 2013; 144: 130137.
237. Drewe, JA, et al. Patterns of direct and indirect contact between cattle and badgers naturally infected with tuberculosis. Epidemiology and Infection 2013; 141: 14671475.
238. Judge, J, et al. Effectiveness of biosecurity measures in preventing badger visits to farm buildings. PLoS ONE 2011; 6: e28941.
239. Roper, TJ, Garnett, BT, Delahay, RJ. Visits to farm buildings and cattle troughs by badgers (Meles meles): a potential route for transmission of bovine tuberculosis (Mycobacterium bovis) between badgers and cattle. Cattle Practice 2003; 11: 912.
240. Tolhurst, BA, et al. Behaviour of badgers (Meles meles) in farm buildings: opportunities for the transmission of Mycobacterium bovis to cattle? Applied Animal Behaviour Science 2009; 117: 103113.
241. Ward, AI, Judge, J, Delahay, RJ. Farm husbandry and badger behaviour: opportunities to manage badger to cattle transmission of Mycobacterium bovis? Preventive Veterinary Medicine 2010; 93: 210.
242. Roper, TJ. Badger setts as a limiting resource. In: The Badger. Dublin: Royal Irish Academy, 1993, pp. 2634.
243. Smith, L A, et al. The effect of grazing management on livestock exposure to parasites via the faecal-oral route. Preventive Veterinary Medicine 2009; 91: 95106.
244. Benham, PFJ. A study of cattle and badger behaviour and farm husbandry practices relevant to the transmission of bovine tuberculosis (Mycobacterium bovis) 1985. Report to MAFF Chief Scientists’ Group (1982–1985), MAFF, London.
245. Hutchings, MR, Harris, S. Effects of farm management practices on cattle grazing behaviour and the potential for transmission of bovine tuberculosis from badgers to cattle. Veterinary Journal 1997; 153: 149162.
246. Gallagher, J, Horwill, DM. A selective oleic acid albumin agar medium for the cultivation of Mycobacterium bovis. Epidemiology & Infection 1977; 79: 155160.
247. Brown, JA, Cheeseman, CL, Harris, S. Studies on the spread of bovine tuberculosis from badgers to cattle. Journal of Zoology 1992; 277: 694696.
248. Garnett, BT, Roper, TJ, Delahay, RJ. Use of cattle troughs by badgers (Meles meles) – a potential route for the transmission of bovine tuberculosis (Mycobacterium bovis) to cattle. Applied Animal Behaviour Science 2003; 80: 18.
249. Daniels, MJ, Hutchings, MR, Greig, A. The risk of disease transmission to livestock posed by contamination of farm stored feed by wildlife excreta. Epidemiology and Infection 2003; 130: 561568.
250. Pavlik, I. Incidence of bovine tuberculosis in wild and domestic animals other than cattle in six Central European countries during 1990–1999. Veterinarni Medicina 2002; 47.
251. Machackova, M, et al. Wild boar (Sus scrofa) as a possible vector of mycobacterial infections: review of literature and critical analysis of data from Central Europe between 1983 to 2001. Veterinarni Medicina 2003; 48: 5165.
252. Duarte, EL, et al. Spoligotype diversity of Mycobacterium bovis and Mycobacterium caprae animal isolates. Veterinary Microbiology 2008; 130: 415421.
253. Serraino, A, et al. Monitoring of transmission of tuberculosis between wild boars and cattle: genotypical analysis of strains by molecular epidemiology techniques. Journal of Clinical Microbiology 1999; 37: 27662771.
254. Biolatti, B, et al. Tuberculosis in wild boar (Sus scrofa) in Liguria (Italy). In: 34th International Symposium on Diseases of Zoo and Wild Animals, Santander, Spain, 1992, pp. 5559.
255. Bollo, E, et al. Detection of Mycobacterium tuberculosis complex in lymph nodes of wild boar (Sus scrofa) by a target-amplified test system. Journal of Veterinary Medicine, Series B 2000; 47: 337342.
256. Kalenski, P. Isolation of mycobacteria from wild boar. Veterinarstvi 1992; 42: 2.
257. Santos, N, et al. Epidemiology of Mycobacterium bovis infection in wild boar (Sus scrofa) from portugaL. Journal of Wildlife Diseases 2009; 45: 10481061.
258. Foyle, KL, Delahay, RJ, Massei, G. Isolation of Mycobacterium bovis from a feral wild boar (Sus scrofa) in the UK. Veterinary Record 2010; 166: 663664.
259. Gortazar, C, et al. Bovine tuberculosis in Donana Biosphere Reserve: the role of wild ungulates as disease reservoirs in the last Iberian lynx strongholds. PLoS ONE 2008: e2776.
260. Gortazar, C, et al. Molecular characterization of Mycobacterium tuberculosis complex isolates from wild ungulates in south-central Spain. Veterinary Research 2005; 36: 4352.
261. Vicente, J, et al. Wild boar and red deer display high prevalences of tuberculosis-like lesions in Spain. Veterinary Research 2006; 37: 107119.
262. Aranaz, A, et al. Bovine tuberculosis (Mycobacterium bovis) in wildlife in Spain. Journal of Clinical Microbiology 2004; 42: 26022608.
263. Parra, A, et al. Molecular epidemiology of bovine tuberculosis in wild animals in Spain: A first approach to risk factor analysis. Veterinary Microbiology 2005; 110: 293300.
264. Naranjo, V, et al. Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. Veterinary Microbiology 2008; 127: 19.
265. Gaillard, J-M, Brandt, S, Jullien, J-M. Body weight effect on reproduction of young wild boar females: a comparative analysis. Folia Zoologica 1993; 42: 204212.
266. Wilson, CJ. The establishment and distribution of feral wild boar (Sus scrofa L.) in England. Wildlife Biology in Practice 2013; 10: 16.
267. Skuce, RA, et al. Differentiation of Mycobacterium bovis isolates from animals by DNA typing. Journal of Clinical Microbiology 1996; 34: 24692474.
268. Aranaz, A, et al. Spacer oligonucleotide typing of Mycobacterium bovis strains from cattle and other animals: a tool for studying epidemiology of tuberculosis. Journal of Clinical Microbiology 1996; 34: 27342740.
269. Palmer, MV, Waters, WR, Whipple, DL. Shared feed as a means of deer-to-deer transmission of Mycobacterium bovis. Journal of Wildlife Diseases 2004; 40: 8791.
270. Delahay, RJ, et al. Bovine tuberculosis infection in wild mammals in the South-West region of England: a survey of prevalence and a semi-quantitative assessment of the relative risks to cattle. Veterinary Journal 2007; 173: 287301.
271. Delahay, RJ, et al. The status of Mycobacterium bovis infection in UK wild mammals: a review. Veterinary Journal 2001; 164: 90105.
272. Nielsen, FW, Plum, N. Pulmonary tuberculosis in man as a source of infection for cattle. Veterinary Journal 1940; 96: 618.
273. Blacklock, JWS. The epidemiology of tuberculosis. British Medical Journal 1947: 707715.
274. Wiesmann, E. Bovine tuberculosis in humans and its epidemiological significance in veterinary work [in German]. Schweizer Archiv fur Tierheilkunde 1960; 102: 467471.
275. Werner, E. Transmission of tuberculosis to a herd of cattle by an animal attendant with renal tuberculosis. Monatshefte fur Veterinarmedizin 1981; 36: 819820.
276. Weber, A, Lutz, H, Bauer, K. Current importance of humans for the occurrence of Mycobacterium bovis infections in herds of cattle. Berliner und Munchener Tierarztliche Wochenschrift 1988; 101: 341344.
277. Wolter, F, Schulz, G, Siering, W. Prevention and control of tuberculosis in cattle with reference to human medical aspects. Monatshefte fur Veterinarmedizin 1982; 37: 772776.
278. Fritsche, A, et al. Mycobacterium bovis tuberculosis: from animal to man and back. International Journal of Tuberculosis and Lung Disease 2004; 8: 903904.
279. Fetene, T, Kebede, N, Alem, G. Tuberculosis infection in animal and human populations in three districts of Western Gojam, Ethiopia. Zoonoses and Public Health 2011; 58: 4753.
280. Regassa, A, Medhin, G, Ameni, G. Bovine tuberculosis is more prevalent in cattle owned by farmers with active tuberculosis in central Ethiopia. Veterinary Journal 2008; 178: 119125.
281. Cook, AJ, et al. Human and bovine tuberculosis in the Monze District of Zambia – a cross-sectional study. British Veterinary Journal. 1996; 152: 3746.
282. Awah-Ndukum, J, et al. Preliminary report on the zoonotic significance of tuberculosis in cattle in the highlands of Cameroon. Animal hygiene and sustainable livestock production. Proceedings of the XVth International Congress of the International Society for Animal Hygiene, Vienna, Austria, 3–7 July 2011, Volume 1, 2011, pp. 193195.
283. Brooks-Pollock, E, Keeling, M. Herd size and bovine tuberculosis persistence in cattle farms in Great Britain. Preventive Veterinary Medicine 2009; 92: 360365.
284. Group, IS. Badgers and cattle TB: the final report of the Independent Scientific Group on Cattle TB. Parliament Publications, 2007.
285. Woodroffe, R, et al. Spatial association of Mycobacterium bovis infection in cattle and badgers Meles Meles . Journal of Applied Ecology 2005; 42: 852862.
286. Brooks-Pollock, E, Roberts, GO, Keeling, MJ. A dynamic model of bovine tuberculosis spread and control in Great Britain. Nature 2014; 511: 228.
287. Guta, S, et al. Epidemiological investigation of bovine tuberculosis herd breakdowns in Spain 2009/2011. PLoS ONE 2014; 9.
288. Woodbine, KA, et al. Seroprevalence and epidemiological characteristics of Mycobacterium avium subsp. paratuberculosis on 114 cattle farms in south west England. Preventive Veterinary Medicine 2009; 89: 102109.
289. Claridge, J, et al. Fasciola hepatica is associated with the failure to detect bovine tuberculosis in dairy cattle. Nature Communications 2012; 3: 853.
290. McCann, CM, Baylis, M, Williams, DJ. Seroprevalence and spatial distribution of Fasciola hepatica-infected dairy herds in England and Wales. Veterinary Record 2010; 166: 612617.
291. Bishop, SC, Woolliams, JA. Genomics and disease resistance studies in livestock. Livestock Science 2014; 166: 190198.
292. Anon. Genetic index to help breed dairy cows with greater resistance to bovine TB. Veterinary Record 2016; 178: 56.
293. Leach, M, Scoones, I. The social and political lives of zoonotic disease models: Narratives, science and policy. Social Science & Medicine 2013; 88: 1017.
294. Catley, A, Alders, RG, Wood, JLN. Participatory epidemiology: approaches, methods, experiences. Veterinary Journal 2012; 191: 151160.
295. Broughan, JM, et al. Farm characteristics and farmer perceptions associated with bovine tuberculosis incidents in areas of emerging endemic spread. Preventive Veterinary Medicine. Accepted. 129: 8896.
296. Cox, DR, et al. Simple model for tuberculosis in cattle and badgers. Proceedings of the National Academy of Sciences USA 2005; 102: 1758817593.
297. Richardson, IW, et al. Variance components for susceptibility to Mycobacterium bovis infection in dairy and beef cattle. Genetics, Selection, Evolution 2014; 46: 77.
298. Alvarez, J, et al. Bovine tuberculosis: within-herd transmission models to support and direct the decision-making process. Research in Veterinary Science. 2014; 97 (Suppl.): S61S68.
299. Jin, R, et al. Association between rainfall and bovine TB in Wicklow, Ireland. Veterinary Record 2013; 173: 452.
300. Maddock, ECG. Further studies on the survival time of the bovine tubercle bacillus in soil, soil and dung, in dung and on grass, with experiments On feeding guinea-pigs and calves on grass artificially infected with bovine tubercle bacilli. Journal of Hygiene 1934; 34: 372379.
301. Maddock, ECG. Studies on the survival time of the bovine tubercle bacillus in soil, soil and dung, in dung and on grass, with experiments on the preliminary treatment of infected organic matter and the cultivation of the organism. Journal of Hygiene 1933; 33: 103117.
302. King, E, Lovell, D, Harris, S. Effect of climate on the survival of Mycobacterium bovis and its transmission to cattle herds in south-west Britain. Advances in Vertebrate Pest Management, 1999, pp. 14161.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Broughan supplementary material
Broughan supplementary material

 Word (29 KB)
29 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed