Skip to main content Accessibility help
×
×
Home

The impact of a school-based water supply and treatment, hygiene, and sanitation programme on pupil diarrhoea: a cluster-randomized trial

  • M. C. FREEMAN (a1), T. CLASEN (a2), R. DREIBELBIS (a3), S. SABOORI (a1), L. E. GREENE (a1), B. BRUMBACK (a4), R. MUGA (a5) and R. RHEINGANS (a6)...

Summary

The impact of improved water, sanitation, and hygiene (WASH) access on mitigating illness is well documented, although impact of school-based WASH on school-aged children has not been rigorously explored. We conducted a cluster-randomized trial in Nyanza Province, Kenya to assess the impact of a school-based WASH intervention on diarrhoeal disease in primary-school pupils. Two study populations were used: schools with a nearby dry season water source and those without. Pupils attending ‘water-available’ schools that received hygiene promotion and water treatment (HP&WT) and sanitation improvements showed no difference in period prevalence or duration of illness compared to pupils attending control schools. Those pupils in schools that received only the HP&WT showed similar results. Pupils in ‘water-scarce’ schools that received a water-supply improvement, HP&WT and sanitation showed a reduction in diarrhoea incidence and days of illness. Our study revealed mixed results on the impact of improvements to school WASH improvements on pupil diarrhoea.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The impact of a school-based water supply and treatment, hygiene, and sanitation programme on pupil diarrhoea: a cluster-randomized trial
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The impact of a school-based water supply and treatment, hygiene, and sanitation programme on pupil diarrhoea: a cluster-randomized trial
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The impact of a school-based water supply and treatment, hygiene, and sanitation programme on pupil diarrhoea: a cluster-randomized trial
      Available formats
      ×

Copyright

Corresponding author

* Author for correspondence: Dr M. C. Freeman, 1518 Clifton Road NE, CNR 2027 Atlanta, Georgia 30322, USA. (Email: mcfreem@emory.edu)

References

Hide All
1. Lozano, R, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2013; 380: 20952128.
2. Liu, L, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 2012; 379: 21512161.
3. Murray, CJ, et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2013; 380: 21972223.
4. Fischer, Walker CL, Black, RE. Diarrhoea morbidity and mortality in older children, adolescents, and adults. Epidemiology and Infection 2010; 138: 12151226.
5. Lim, SS, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2013; 380: 22242260.
6. Fewtrell, L, et al. Water, sanitation, and hygiene interventions to reduce diarrhoea in less developed countries: a systematic review and meta-analysis. Lancet Infectious Diseases 2005; 5: 4252.
7. Cairncross, S, et al. Water, sanitation and hygiene for the prevention of diarrhoea. International Journal of Epidemiology 2010; 39 (Suppl. 1): i193205.
8. Bowen, A, et al. A cluster-randomized controlled trial evaluating the effect of a handwashing-promotion program in Chinese primary schools. American Journal of Tropical Medicine & Hygiene 2007; 76: 11661173.
9. O'Reilly, C, et al. The impact of a school-based safe water and hygiene programme on knowledge and practices of students and their parents: Nyanza Province, western Kenya, 2006. Epidemiology & Infection 2008; 136: 8091.
10. Talaat, M, et al. Effects of hand hygiene campaigns on incidence of laboratory-confirmed influenza and absenteeism in schoolchildren, Cairo, Egypt. Emerging Infectious Diseases 2011; 17: 619625.
11. Freeman, M, et al. Assessing the impact of a school-based water treatment, hygiene, and sanitation program on pupil absence in Nyanza Province, Kenya: a cluster-randomized trial. Tropical Medicine and International Health 2012; 17: 380391.
12. Nandrup-Bus, I. Mandatory handwashing in elementary schools reduces absenteeism due to infectious illness among pupils: a pilot intervention study. American Journal of Infection Control 2009; 37: 820826.
13. Cairncross, S, et al. The public and domestic domains in the transmission of disease. Tropical Medicine & International Health 1996; 1: 2734.
14. UNICEF. Raising Even More Clean Hands. New York: UNICEF, 2012.
15. Saboori, S, et al. Sustainability of school water, sanitation, and hygiene. lessons learned and to be learned. Waterlines 2011; 30: 298311.
16. Greene, LE, et al. Impact of a school-based hygiene promotion and sanitation intervention on pupil hand contamination in Western Kenya: a cluster randomized trial. American Journal of Tropical Medicine & Hygiene 2012; 87: 385393.
17. Garn, J, et al. A cluster-randomized trial assessing the impact of school water, sanitation, and hygiene improvements on pupil enrollment and gender parity in enrollment. Journal of Water, Sanitation, and Hygiene for Development (in press).
18. Dreibelbis, R, et al. Water, sanitation, and primary school attendance: a multi-level assessment of determinants of household-reported absence in Kenya. International Journal of Educational Development (in press).
19. Republic of Kenya Ministry of Education. National School Water, Sanitation and Hygiene Promotion Strategy 2008–2015, 2008, Nairobi.
20. WHO/UNICEF. Progress on sanitation and drinking-water: 2010 update. WHO/UNICEF Joint Monitoring Program for Water Supply and Sanitation, Geneva, 2010.
21. Baqui, AH, et al. Methodological issues in diarrhoeal diseases epidemiology: definition of diarrhoeal episodes. International Journal of Epidemiology 1991; 20: 10571063.
22. Hayes, RJ, Bennett, S. Simple sample size calculation for cluster-randomized trials. International Journal of Epidemiology 1999; 28: 319326.
23. Schmidt, WP, et al. Epidemiological methods in diarrhoea studies – an update. International Journal of Epidemiology (in press).
24. Vyas, S, Kumaranayake, L. Constructing socio-economic status indices: how to use principal components analysis. Health Policy and Planning 2006; 21: 459468.
25. Gwatkin, DR, et al. Socio-economic differences in health, nutrition, and population within developing countries: an overview. In: Country Reports on HNP and Poverty 2007. Produced by the World Bank in collaboration with the Government of the Netherlands and the Swedish International Development Cooperation Agency, Washington, DC, pp. 301.
26. Dreibelbis, R, et al. The impact of school-based water, sanitation, and hygiene improvements on diarrhea and clinic visits among young siblings of school-going children: results from a cluster-randomized trial. American Journal of Public Health (in press).
27. Migele, J, et al. Diarrhea prevention in a Kenyan school through the use of a simple safe water and hygiene intervention. American Journal of Tropical Medicine & Hygiene 2007; 76: 351353.
28. Pickering, AJ, Davis, J. Freshwater availability and water fetching distance affect child health in sub-Saharan Africa. Environmental Science & Technology 2012; 46: 23912397.
29. Wright, J, Gundry, S, Conroy, R. Household drinking water in developing countries: a systematic review of microbiological contamination between source and point-of-use. Tropical Medicine & International Health 2004; 9: 106117.
30. Wang, X, Hunter, PR. A systematic review and meta-analysis of the association between self-reported diarrheal disease and distance from home to water source. American Journal of Tropical Medicine & Hygiene 2010; 83: 582584.
31. Clasen, T, et al. Interventions to improve water quality for preventing diarrhoea: systematic review and meta-analysis. British Medical Journal 2007; 334: 782.
32. Bates, SJ, et al. Relating diarrheal disease to social networks and the geographic configuration of communities in rural Ecuador. American Journal of Epidemiology 2007; 166: 10881095.
33. Eisenberg, JN, Scott, JC, Porco, T. Integrating disease control strategies: balancing water sanitation and hygiene interventions to reduce diarrheal disease burden. American Journal of Public Health 2007; 97: 846852.
34. Dean, J, Hunter, PR. Risk of gastrointestinal illness associated with the consumption of rainwater: a systematic review. Environmental Science & Technology 2012; 46: 25012507.
35. Schmidt, WP, Cairncross, S. Household water treatment in poor populations: is there enough evidence for scaling up now? Environmental Science & Technology 2009; 43: 986992.
36. Ramakrishnan, R, et al. Influence of recall period on estimates of diarrhoea morbidity in infants in rural Tamil Nadu. Indian Journal of Public Health, 1998; 42: 36.
37. Byass, P, Hanlon, PW. Daily morbidity records: recall and reliability. International Journal of Epidemiology 1994; 23: 757763.
38. Feikin, DR, et al. Evaluation of the optimal recall period for disease symptoms in home-based morbidity surveillance in rural and urban Kenya. International Journal of Epidemiology 2010; 39: 450458.
39. Alam, N, Henry, FJ, Rahaman, MM. Reporting errors in one-week diarrhoea recall surveys: experience from a prospective study in rural Bangladesh. International Journal of Epidemiology 1989; 18: 697700.
40. Schmidt, WP, et al. Weight-for-age z-score as a proxy marker for diarrhoea in epidemiological studies. Journal of Epidemiology and Community Health 2010; 64: 10741079.
41. Humphrey, JH. Child undernutrition, tropical enteropathy, toilets, and handwashing. Lancet 2009; 374: 10321035.
42. Fink, G, Gunther, I, Hill, K. The effect of water and sanitation on child health: evidence from the demographic and health surveys 1986–2007. International Journal of Epidemiology 2011; 40: 11961204.
43. Weisz, A, et al. The duration of diarrhea and fever is associated with growth faltering in rural Malawian children aged 6–18 months. Nutrition Journal 2011; 10: 25.
44. Patel, MK, et al. Impact of a hygiene curriculum and the installation of simple handwashing and drinking water stations in rural Kenyan primary schools on student health and hygiene practices. American Journal of Tropical Medicine & Hygiene 2012; 87: 594601.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed