Skip to main content Accessibility help
×
×
Home

Incidence of invasive pneumococcal disease in the Czech Republic and serotype coverage by vaccines, 1997–2006

  • J. MOTLOVA (a1) (a2), C. BENES (a3) and P. KRIZ (a2)

Summary

We studied the incidence of invasive pneumococcal disease (IPD) in the Czech Republic by analysing two sources of data. The incidence of pneumococcal meningitis based on routine notification data varied between 0·4 and 0·6/100 000 population between 1997 and 2006. The incidence of IPD based on laboratory surveillance varied between 2·3 and 4·3/100 000 population between 2000 and 2006. The annual IPD incidence remained stable during the study period. Estimates of absolute IPD case-load in the entire country varied from 235 to 437 per year. The age-specific incidence was highest in the <1 year age group, reaching 4·3/100 000 for pneumococcal meningitis in routine notification and 15·7/100 000 for IPD in laboratory-based surveillance data, respectively. A total of 1236 Streptococcus pneumoniae isolates from cerebrospinal fluid and sterile body sites were investigated. The most frequent serotypes causing IPD in all ages were 3, 4, 14, 8 and 19F, accounting for 41·5% of all isolates. The most frequent serotypes by age group were: <1 year (6B and 19F); 1–4 years (14, 6B and 23F); 40–64 years (3, 8 and 4), and ⩾65 years (3, 4, 9N and 14). The coverage of serotypes in all age groups by pneumococcal vaccines ranged from 41·5% for 7-valent conjugate vaccine to 67·9% for 13-valent conjugate vaccine. The coverage of serotypes causing IPD is significantly different between infants/children and adults/elderly. PCV-7 coverage by age group was: <1 year (66·0%), 1–4 years (65·1%), 40–64 years (34·4%) and ⩾65 years (39·3%). Similar age differences between infants/children and adults/elderly were found in coverage by PCV-9, PCV-11 and PCV-13. The distribution of serotypes in the total population and individual age groups was stable during the period 2000–2006.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Incidence of invasive pneumococcal disease in the Czech Republic and serotype coverage by vaccines, 1997–2006
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Incidence of invasive pneumococcal disease in the Czech Republic and serotype coverage by vaccines, 1997–2006
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Incidence of invasive pneumococcal disease in the Czech Republic and serotype coverage by vaccines, 1997–2006
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr P. Kriz, WHO Collaborating Centre for Reference and Research on Streptococci, National Institute of Public Health, Srobarova 48, 100 42 Prague 10, Czech Republic. (Email: pavla.krizova@szu.cz)

References

Hide All
1. Whitney, CG, et al. Effectiveness of seven-valent pneumococcal conjugate vaccine against invasive pneumococcal disease: a matched case-control study. Lancet 2006; 368: 14951502.
2. Kellner, JD, et al. Progress in the prevention of pneumococcal infection. Canadian Medical Association Journal 2005; 173: 11491151.
3. Butler, JRG, et al. The cost-effectiveness of pneumococcal conjugate vaccination in Australia. Vaccine 2004; 22: 11381149.
4. Pebody, RG, et al. Pneumococcal vaccination policy in Europe. Eurosurveillance 2005; 10: 174178.
5. Lopalco, P (Editorial team). Use of 7-valent pneumococcal conjugate vaccine in EU. Eurosurveillance 2006; 11(12): E061207.3.
6. Grijalva, CG, et al. Decline in pneumonia admission after routine childhood immunisation with pneumococcal conjugate vaccine in the USA: a time-series analysis. Lancet 2007; 369: 11791186.
7. Dean, AG, et al. Epi-Info™: a general purpose microcomputer program for health information systems. American Journal of Preventive Medicine 1991; 7: 178182.
8. Vergison, A, et al. Epidemiologic features of invasive pneumococcal disease in Belgian children: passive surveillance is not enough. Pediatrics 2006; 118: 801809.
9. Dagan, R, et al. Epidemiology of invasive childhood pneumococcal infections in Israel. Journal of the American Medical Association 1992; 268: 33283332.
10. Spanjaard, L, et al. Epidemiology of meningitis and bacteremia due to Streptococcus pneumoniae in The Netherlands. Acta Paediatrica (Suppl.) 2000; 89: 2226.
11. Von Kries, R, et al. Proportion of invasive pneumococcal infections in German children preventable by pneumococcal conjugate vaccines. Clinical Infectious Diseases 2000; 31: 482487.
12. Miller, E, et al. Epidemiology of invasive and other pneumococcal disease in children in England and Wales 1996–1998. Acta Paediatrica (Suppl.) 2000; 89: 1116.
13. McIntosh, EDG, Fritzell, B, Fletcher, MA. Burden of paediatric invasive pneumococcal disease in Europe, 2005. Epidemiology and Infection 2006; 7: 113.
14. Pebody, RG, et al. Pneumococcal disease surveillance in Europe. Eurosurveillance 2006; 11: 171178.
15. Escola, J, et al. Epidemiology of invasive pneumococcal infections in children in Finland. Journal of the American Medical Association 1992; 268: 33233327.
16. Venetz, I, Schopfer, K, Muhlemann, K. Paediatric invasive pneumococcal disease in Switzerland, 1985–1994. International Journal of Epidemiology 1998; 27: 11011104.
17. Ispahani, P, et al. Twenty year surveillance of invasive pneumococcal disease in Nottingham: serogroups responsible and implications for immunisation. Archives of Disease in Childhood 2004; 89: 757762.
18. Kaltoft, MS, Zeuthen, N, Konradsen, HB. Epidemiology of invasive pneumococcal infections in children aged 0–6 years in Denmark: a 19-year nationwide surveillance study. Acta Paediatrica (Suppl.) 2000; 89: 310.
19. Hausdorff, WP. Invasive pneumococcal disease in children: geographic and temporal variations in incidence and serotype distribution. European Journal of Pediatrics 2002; 161: 135139.
20. D'Ancona, F, et al. Incidence of vaccine preventable pneumococcal invasive infections and blood culture practices in Italy. Vaccine 2005; 23: 24942500.
21. Hausdorff, WP, et al. Which pneumococcal serogroups cause the most invasive disease: Implications for conjugate vaccine formulation and use. Part 1. Clinical Infectious Diseases 2000; 30: 100121.
22. Bossen Konradsen, H, Staum Kaltoft, M. Invasive pneumococcal infections in Denmark from 1995 to 1999: epidemiology, serotypes, and resistance. Clinical and Diagnostic Laboratory Immunology 2002; 9: 358365.
23. O'Brien, KL, Dagan, R. The potential indirect effect of conjugate pneumococcal vaccines. Vaccine 2003; 21: 18151825.
24. Pedersen, MK, et al. Systemic pneumococcal disease in Norway 1995–2001: capsular types and antimicrobial resistance. Epidemiology and Infection 2004; 132: 167175.
25. Serrano, I, et al. Invasive Streptococcus pneumoniae from Portugal: implications for vaccination and antimicrobial therapy. Clinical Microbiology and Infection 2004; 10: 652656.
26. Von Kries, R, et al. Prediction of the potential benefit of different pneumococcal conjugate vaccines on invasive pneumococcal disease in German children. Pediatric Infectious Disease Journal 2002; 21: 10171023.
27. WHO position paper. Pneumococcal conjugate vaccine for childhood immunization. Weekly Epidemiological Record 2007; 82: 93104.
28. Hammitt, LL, et al. Indirect effect of conjugate vaccine on adult carriage of Streptococcus pneumoniae: an explanation of trends in invasive pneumococcal disease. Journal of Infectious Diseases 2006; 193: 14871494.
29. Isaacman, DJ, et al. Indirect effects associated with widespread vaccination of infants with heptavalent pneumococcal conjugate vaccine (PCV7; Prevnar). Vaccine 2007; 25: 24202427.
30. Byington, CL, et al. Temporal trends of invasive disease due to Streptococcus pneumoniae among children in the Intermountain West: emergence of nonvaccine serogroups. Clinical Infectious Diseases 2005; 41: 2129.
31. Gonzalez, BE, et al. Streptococcus pneumoniae serogroups 15 and 33: an increasing cause of pneumococcal infections in children in the United States after the introduction of the pneumococcal 7-valent conjugate vaccine. Pediatric Infectious Disease Journal 2006; 25: 301305.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed