Skip to main content
×
×
Home

Multistate outbreak of Listeria monocytogenes infections linked to whole apples used in commercially produced, prepackaged caramel apples: United States, 2014–2015

  • K. M. ANGELO (a1), A. R. CONRAD (a1), A. SAUPE (a2), H. DRAGOO (a3), N. WEST (a4), A. SORENSON (a5), A. BARNES (a6), M. DOYLE (a7), J. BEAL (a7), K. A. JACKSON (a1), S. STROIKA (a1), C. TARR (a1), Z. KUCEROVA (a1), S. LANCE (a1) (a7), L. H. GOULD (a1), M. WISE (a1) and B. R. JACKSON (a1)...
Summary

Whole apples have not been previously implicated in outbreaks of foodborne bacterial illness. We investigated a nationwide listeriosis outbreak associated with caramel apples. We defined an outbreak-associated case as an infection with one or both of two outbreak strains of Listeria monocytogenes highly related by whole-genome multilocus sequence typing (wgMLST) from 1 October 2014 to 1 February 2015. Single-interviewer open-ended interviews identified the source. Outbreak-associated cases were compared with non-outbreak-associated cases and traceback and environmental investigations were performed. We identified 35 outbreak-associated cases in 12 states; 34 (97%) were hospitalized and seven (20%) died. Outbreak-associated ill persons were more likely to have eaten commercially produced, prepackaged caramel apples (odds ratio 326·7, 95% confidence interval 32·2–3314). Environmental samples from the grower's packing facility and distribution-chain whole apples yielded isolates highly related to outbreak isolates by wgMLST. This outbreak highlights the importance of minimizing produce contamination with L. monocytogenes. Investigators should perform single-interviewer open-ended interviews when a food is not readily identified.

Copyright
Corresponding author
*Author for correspondence: K. M. Angelo, DO, MPH-TM, 1600 Clifton Road NE, Mailstop A-38, Atlanta, GA, USA 30329-4027. (Email: kangelo@cdc.gov)
Footnotes
Hide All
† These authors contributed equally to this work.
Footnotes
References
Hide All
1. Scallan, E, et al. Foodborne illness acquired in the United States – major pathogens. Emerging Infectious Diseases 2011; 17: 715.
2. Centers for Disease Control and Prevention. Vital signs: Listeria illnesses, deaths, and outbreaks – United States, 2009–2011. Morbidity and Mortality Weekly Report 2013; 62: 448452.
3. Painter, J, Slutsker, L. Listeriosis in humans. In: Ryser, ET, Marth, EH, eds. Listeria, Listeriosis and Food Safety, 3rd edn. Boca Raton, Florida: Taylor and Francis Group, 2007. pp. 85110.
4. Swaminathan, B, Gerner-Smidt, P. The epidemiology of human listeriosis. Microbes Infection 2007; 9: 12361243.
5. Gottlieb, SL, et al. Multistate outbreak of listeriosis linked to turkey deli meat and subsequent changes in US regulatory policy. Clinical Infectious Diseases 2006; 42: 2936.
6. Jackson, KA, et al. Multistate outbreak of Listeria monocytogenes associated with Mexican-style cheese made from pasteurized milk among pregnant, hispanic women. Journal of Food Protection 2011; 74: 949953.
7. Mead, PS, et al. Nationwide outbreak of listeriosis due to contaminated meat. Epidemiology and Infection 2006; 134: 744751.
8. de Valk, H, et al. Two consecutive nationwide outbreaks of listeriosis in France, October 1999-February 2000. American Journal of Epidemiology 2001; 154: 944950.
9. Garner, D, Kathariou, S. Fresh produce-associated listeriosis outbreaks, sources of concern, teachable moments, and insights. Journal of Food Protection 2016; 79: 337344.
10. Centers for Disease Control and Prevention. Wholesome Soy Products, Inc. Atlanta: Sprouts and investigation of human listeriosis cases (Final update), 27 January 2015 (http://www.cdc.gov/listeria/outbreaks/bean-sprouts-11-14/index.html). Accessed 1 November 2015.
11. Jackson, BA, et al. Listeriosis associated with stone fruit – United States, 2014. Morbidity and Mortality Weekly Report 2015; 64: 282283.
12. Gaul, LK, et al. Hospital-acquired listeriosis outbreak caused by contaminated diced celery — Texas, 2010. Clinical Infectious Diseases 2013; 56: 2026.
13. McCollum, JT, et al. Multistate outbreak of listeriosis associated with cantaloupe. New England Journal of Medicine 2013; 10: 944953.
14. Food and Drug Administration. Crunch pak issues voluntary recall of limited quantities of crunch pak brand apple slices because of possible health risk, 2013. (http://www.fda.gov/Safety/Recalls/ucm375135.htm). Accessed 16 February 2016.
15. Centers for Disease Control and Prevention. Outbreaks of Escherichia coli O157:H7 infection and cryptosporidiosis associated with drinking unpasteurized apple cider x – Connecticut and New York, October 1996. Morbidity and Mortality Weekly Report 1997; 46: 48.
16. Gerner-Smidt, P, et al. PulseNet USA: A five-year update. Foodborne Pathogens and Disease 2006; 3: 919.
17. Swamanathan, B, et al. PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerging Infectious Diseases 2001; 7: 382389.
18. Halpin, JL, et al. Re-evaluation, optimization, and multi-laboratory validation of the PulseNet-standardized pulsed-field gel electrophoresis protocol for Listeria monocytogenes . Foodborne Pathogens and Disease 2010; 7: 293298.
19. Sabat, AJ, et al. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Eurosurveillance 2013; 18.
20. PulseNet International. PulseNet International the International Molecular Subtyping Network for Foodborne Disease Surveillance, 2015 (http://www.pulsenetinternational.org/). Accessed 29 September 2015.
21. Centers for Disease Control and Prevention. National enteric disease surveillance: the Listeria initiative. 2011 (http://www.cdc.gov/listeria/pdf/ListeriaInitiativeOverview_508.pdf). Accessed 12 October 2015.
22. Centers for Disease Control and Prevention. Foodborne disease outbreak investigation and surveillance tools. 2015 (http://www.cdc.gov/foodsafety/outbreaks/surveillance-reporting/investigation-toolkit.html). Accessed 29 September 2015.
23. Centers for Disease Control and Prevention. Foodborne diseases active surveillance network (FoodNet) population survey atlas of exposures, 2006–2007. 2008 (http://www.cdc.gov/foodnet/PDFs/FNExpAtl03022011.pdf). Accessed 29 September 2015.
24. Centers for Disease Control and Prevention. Multistate outbreak of listeriosis linked to whole cantaloupes from Jensen farms, Colorado. 2012 (http://www.cdc.gov/listeria/outbreaks/cantaloupes-jensen-farms/082712/index.html). Accessed 30 October 2015.
25. Jackson, BR, et al. Implementation of nationwide real-time whole-genome sequencing to enhance listeriosis outbreak detection and investigation. Clinical Infectious Diseases 2016. 63: 380386.
26. Mody, RK, et al. Outbreak of Salmonella enterica serotype I 4,5,23:1:- infections: the challenges of hypothesis generation and microwave cooking. Epidemiology and Infection 2014; 142: 10501060.
27. Schlech, WF 3rd, et al. Epidemic listeriosis – evidence for transmission by food. New England Journal of Medicine 1983; 308: 203206.
28. Glass, KA, et al. Growth of Listeria monocytogenes within a caramel-coated apple microenvironment. mBio 6: e0123215.
29. The Wall Street Journal. Kroger pulls caramel apples after study on Listeria threat. New York, 2015 (http://www.wsj.com/articles/kroger-pulls-caramel-apples-after-study-on-listeria-threat-1444947940). Accessed 16 October 2015.
30. Annous, BA, et al. Efficacy of washing with a commercial flatbed brush washer, using conventional and experimental washing agents, in reducing populations of Escherichia coli on artificially inoculated apples. Journal of Food Protection 2001; 654: 159163.
31. Riordan, DC, Sapers, G. The survival of Escherichia coli O157:H7 in the presence of Penicillium expansum and Glomerella cingulate in wounds on apple surfaces. Journal of Food Protection 2000; 12: 16371642.
32. Food and Drug Administration. FSMA final rule on produce safety. Silver Spring, Maryland (http://www.fda.gov/Food/GuidanceRegulation/FSMA/ucm334114.htm). Accessed 30 October 2015.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 44
Total number of PDF views: 275 *
Loading metrics...

Abstract views

Total abstract views: 1297 *
Loading metrics...

* Views captured on Cambridge Core between 9th January 2017 - 20th September 2018. This data will be updated every 24 hours.