Skip to main content Accessibility help
×
×
Home

A One Health investigation of Salmonella enterica serovar Wangata in north-eastern New South Wales, Australia, 2016–2017

  • J. Collins (a1) (a2), K. M. J. Simpson (a3), G. Bell (a4), D. N. Durrheim (a1) (a5) (a6), G. A. Hill-Cawthorne (a7) (a8), K. Hope (a9), P. Howard (a10), T. Kohlenberg (a4), K. Lawrence (a4), K. Lilly (a1), P. Porigneaux (a1), V. Sintchenko (a7) (a11) (a12), Q. Wang (a11), M. P. Ward (a3), A. Wiethoelter (a3) (a13), S. M. Mor (a3) (a7) and J. Flint (a1)...

Abstract

Salmonella enterica serovar Wangata (S. Wangata) is an important cause of endemic salmonellosis in Australia, with human infections occurring from undefined sources. This investigation sought to examine possible environmental and zoonotic sources for human infections with S. Wangata in north-eastern New South Wales (NSW), Australia. The investigation adopted a One Health approach and was comprised of three complimentary components: a case–control study examining human risk factors; environmental and animal sampling; and genomic analysis of human, animal and environmental isolates. Forty-eight human S. Wangata cases were interviewed during a 6-month period from November 2016 to April 2017, together with 55 Salmonella Typhimurium (S. Typhimurium) controls and 130 neighbourhood controls. Indirect contact with bats/flying foxes (S. Typhimurium controls (adjusted odds ratio (aOR) 2.63, 95% confidence interval (CI) 1.06–6.48)) (neighbourhood controls (aOR 8.33, 95% CI 2.58–26.83)), wild frogs (aOR 3.65, 95% CI 1.32–10.07) and wild birds (aOR 6.93, 95% CI 2.29–21.00) were statistically associated with illness in multivariable analyses. S. Wangata was detected in dog faeces, wildlife scats and a compost specimen collected from the outdoor environments of cases’ residences. In addition, S. Wangata was detected in the faeces of wild birds and sea turtles in the investigation area. Genomic analysis revealed that S. Wangata isolates were relatively clonal. Our findings suggest that S. Wangata is present in the environment and may have a reservoir in wildlife populations in north-eastern NSW. Further investigation is required to better understand the occurrence of Salmonella in wildlife groups and to identify possible transmission pathways for human infections.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A One Health investigation of Salmonella enterica serovar Wangata in north-eastern New South Wales, Australia, 2016–2017
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A One Health investigation of Salmonella enterica serovar Wangata in north-eastern New South Wales, Australia, 2016–2017
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A One Health investigation of Salmonella enterica serovar Wangata in north-eastern New South Wales, Australia, 2016–2017
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: J. Collins, E-mail: Julie.Collins@hnehealth.nsw.gov.au

References

Hide All
1.Ford, L et al. (2016) Increasing incidence of Salmonella in Australia, 2000–2013. PLoS ONE 11, e0163989.
2.Grimont, PAD and Weill, F-X (2007) Antigenic formulae of the Salmonella serovars: 9th edition, WHO Collaborating Centre for Reference and Research on Salmonella. Available at https://www.pasteur.fr/sites/default/files/veng_0.pdf, (Accessed 2 July 2017).
3.Vally, H et al. (2014) Proportion of illness acquired by foodborne transmission for nine enteric pathogens in Australia: an expert elicitation. Foodborne Pathogens and Disease 11, 727733.
4.Parsons, SK, Bull, CM and Gordon, DM (2015) Spatial variation and survival of Salmonella enterica subspecies in a population of Australian Sleepy Lizards (Tiliqua rugosa). Applied and Environmental Microbiology 81, 58045811.
5.Murray, CJ (1991) Salmonellae in the environment. Revue Scientifique Et Technique 10, 765785.
6.Ashbolt, R and Kirk, MD (2006) Salmonella Mississippi infections in Tasmania: the role of native Australian animals and untreated drinking water. Epidemiology and Infection 134, 12571265.
7.Staff, M et al. (2012) Salmonellosis outbreak traced to playground sand, Australia, 2007–2009. Emerging Infectious Diseases 18, 11591162.
8.Williams, S et al. (2015) Salmonella in the tropical household environment – everyday, everywhere. Journal of Infection 71, 642648.
9.Australian Government Department of Prime Minister and Cabinet. PSMA Geocoded National Address File (G-NAF); 23 August 2017. Available at http://data.gov.au/dataset/19432f89-dc3a-4ef3-b943-5326ef1dbecc (Accessed 4 October 2017).
10.Haahr, M. Random.org. Available at https://www.random.org/integers/ (Accessed 30 April 2017).
11.Australian Bureau of Statistics (2006) Australian Standard Geographical Classification Remoteness Structure Digital Boundaries. Available at http://www.abs.gov.au/AUSSTATS/abs@.nsf/Lookup/1259.0.30.004Main+Features12006?OpenDocument (Accessed 3 June 2017).
12.Harris, PA et al. (2009) Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics 42, 377381.
13.Camacho, M et al. (2016) Use of wildlife rehabilitation centres in pathogen surveillance: a case study in white storks (Ciconia ciconia). Preventive Veterinary Medicine 130, 106111.
14.Phillips, A et al. (2016) Whole genome sequencing of Salmonella Typhimurium illuminates distinct outbreaks caused by an endemic multi-locus variable number tandem repeat analysis type in Australia, 2014. BMC microbiology 16, 211.
15.Bolger, AM, Lohse, M and Usadel, B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 30, 21142120.
16.Leekitcharoenphon, P et al. (2012) Genomic variation in Salmonella enterica core genes for epidemiological typing. BMC Genomics 13, 8888.
17.Price, MN, Dehal, PS and Arkin, AP (2010) Fasttree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490.
18.Assefa, S et al. (2009) ABACAS: algorithm-based automatic contiguation of assembled sequences. Bioinformatics (Oxford, England) 25, 19681969.
19.Carver, T et al. (2008) Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics (Oxford, England) 24, 26722676.
20.Tsai, IJ, Otto, TD and Berriman, M (2010) Improving draft assemblies by iterative mapping and assembly of short reads to eliminate gaps. Genome Biology 11, R41.
21.Otto, TD et al. (2011) RATT: Rapid Annotation Transfer Tool. Nucleic Acids Research 39, e57e57.
22.Henry, R et al. (2018) What's the risk? Identifying potential human pathogens within grey-headed flying foxes faeces. PLoS ONE 13, e0191301.
23.Taylor, R et al. (2000) A waterborne outbreak of Salmonella saintpaul. Communicable Diseases Intelligence 24, 336340.
24.Hilbert, F et al. (2012) Salmonella in the wildlife-human interface. Food Research International 45, 603608.
25.Dolejska, M et al. (2016) High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. The Journal of Antimicrobial Chemotherapy 71, 63.
26.Lowden, P et al. (2015) Investigating the prevalence of Salmonella in dogs within the Midlands region of the United Kingdom. BMC Veterinary Research 11, 239.
27.Taylor, DJ and Philbey, AW (2010) Salmonella infections in garden birds and cats in a domestic environment. The Veterinary Record 167, 2627.
28.Tauni, MA and öSterlund, A (2000) Outbreak of Salmonella Typhimurium in cats and humans associated with infection in wild birds. Journal of Small Animal Practice 41, 339341.
29.Sato, Y et al. (2000) Salmonella Virchow infection in an infant transmitted by household dogs. Journal of Veterinary Medical Science 62, 767769.
30.Bloomfield, SJ et al. (2017) Genomic analysis of Salmonella enterica serovar Typhimurium DT160 associated with a 14-year outbreak, New Zealand, 1998–2012. Emerging Infectious Diseases 23, 906.
31.Mather, AE et al. (2016) Genomic analysis of Salmonella enterica serovar Typhimurium from wild passerines in England and Wales. Applied and Environmental Microbiology 82, 67286735.
32.Taylor, AJ et al. (2015) Characterization of foodborne outbreaks of Salmonella enterica serovar Enteritidis with whole-genome sequencing single nucleotide polymorphism-based analysis for surveillance and outbreak detection. Journal of Clinical Microbiology 53, 33343340.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed