Skip to main content Accessibility help
×
Home

Prevalence of Staphylococcus aureus carriage among dogs and their owners

  • M. V. BOOST (a1), M. M. O'DONOGHUE (a2) and A. JAMES (a3)

Summary

Case reports have indicated transmission of Staphylococcus aureus between humans and pets. We investigated associations between level of contact between dog and owner, and S. aureus colonization. In a cross-sectional study, nasal carriage and antibiotic susceptibility of S. aureus was determined for 830 dogs and 736 owners. Relatedness of isolates was investigated using antibiograms and pulsed-field gel electrophoresis (PFGE). Associations between carriage and demographics or amount of contact between owners and dogs were documented. S. aureus was isolated in 24% of humans and 8·8% of dogs. Antibiotic resistance was significantly more common in canine isolates. Of 17 owner/dog colonized pairs, six were indistinguishable by PFGE. Colonization of dogs was not associated with close human contact, but was strongly associated with health-care occupations (OR 3·29, 95% CI 1·49–7·26, P=0·002). In outbreak situations health-care workers' pets should be considered as a source of S. aureus. High rates of resistance indicate increased monitoring of antibiotic use in veterinary practice is needed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Prevalence of Staphylococcus aureus carriage among dogs and their owners
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Prevalence of Staphylococcus aureus carriage among dogs and their owners
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Prevalence of Staphylococcus aureus carriage among dogs and their owners
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr M. V. Boost, Associate Professor, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. (Email: htmboost@polyu.edu.hk)

References

Hide All
1. Kluytmans, JAJW, Wertheim, HFL. Nasal carriage of Staphylococcus aureus and prevention of nosocomial infections. Infection 2005; 33: 38.
2. Weidenmaier, CJF, et al. Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nature Medicine 2004; 10: 243245.
3. Katayama, Y, Ito, T, Hiramatsu, K. A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 2000; 44: 15491555.
4. Chambers, HF. The changing epidemiology of Staphylococcus aureus. Emerging Infectious Diseases 2001; 7: 178182.
5. Shopsin, B, et al. Prevalence of methicillin-resistant and methicillin-susceptible Staphylococcus aureus in the community. Journal of Infectious Diseases 2000; 182: 359362.
6. O'Donoghue, MM, Boost, MV. The prevalence and source of methicillin-resistant Staphylococcus aureus (MRSA) in the community in Hong Kong. Epidemiology and Infection 2004; 132: 10911097.
7. Hisata, K, et al. Dissemination of methicillin-resistant staphylococci among healthy Japanese children. Journal of Clinical Microbiology 2005; 43: 33643372.
8. Scanvic, A, et al. Duration of colonization by methicillin-resistant Staphylococcus aureus after hospital discharge and risk factors for prolonged carriage. Clinical Infectious Diseases 2001; 32: 13931398.
9. Boyce, JM. Methicillin-resistant Staphylococcus aureus in hospitals and long term facilities: microbiology, epidemiology and preventive measures. Infection Control and Hospital Epidemiology 1992; 13: 725737.
10. van Duijkeren, E, et al. Human-to-dog transmission of methicillin-resistant Staphylococcus aureus. Emerging Infectious Diseases 2004; 10: 22352237.
11. Cefai, C, Ashurst, S, Owens, C. Human carriage of methicillin-resistant Staphylococcus aureus linked with pet dog. Lancet 1994; 344: 539540.
12. Manian, FA. Asymptomatic nasal carriage of mupiricin-resistant methicillin-resistant Staphylococcus aureus (MRSA) in a pet dog associated with MRSA infection in household contacts. Clinical Infectious Diseases 2003; 36: E2628.
13. Simoons-Smit, AM, et al. Transmission of Staphylococcus aureus between humans and domestic animals in a household. European Journal of Clinical Microbiology and Infectious Diseases 2000; 19: 150152.
14. Enoch, DA, et al. MRSA carriage in a pet therapy dog. Journal of Hospital Infection 2005; 60: 186188.
15. Duquette, RA, Nuttall, TJ. Methicillin-resistant Staphylococcus aureus in dogs and cats: an emerging problem? Journal of Small Animal Practice 2004; 45: 591597.
16. Guardabassi, L, Loeber, ME, Jacobson, A. Transmission of multiple antimicrobial-resistant Staphylococcus intermedius between dogs affected by deep pyoderma and their owners. Veterinary Microbiology 2004; 98: 2327.
17. Pak, SI, Han, HR, Shimuzu, A. Characterisation of methicillin-resistant Staphylococcus aureus isolated from dogs in Korea. Journal of Veterinary Medical Science 1999; 60: 15261530.
18. Tomlin, J, et al. Methicillin-resistant Staphylococcus aureus infections in 11 dogs. Veterinary Record 1999; 144: 6064.
19. Pinchbeck, LR, et al. Genotypic relatedness of staphylococcal strains isolated from pustules and carriage sites in dogs with supeficial bacterial folliculitis. American Journal of Veterinary Research 2006; 67: 13371346.
20. Harvey, RG, Noble, WC. Aspects of nasal, oropharyngeal and anal carriage of Staphylococcus intermedius in normal dogs and dogs with pyoderma. Veterinary Dermatology 1998; 9: 99104.
21. Hoekstra, KA, Paulton, RJL. Clinical prevalence and antimicrobial susceptibility of Staphylococcus aureus and Staph. intermedius in dogs. Journal of Applied Microbiology 2002; 93: 406413.
22. Bannerman, TL. Staphylococcus, Micrococcus, and other catalase-positive cocci that grow aerobically. In: Murray, PR, Baron, EJ, Jorgensen, JH, Pfaller, MA, Yolken, RH eds. Manual of Clinical Microbiology, 8th edn. Washington, DC: ASM Press, 2003, pp. 384404.
23. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, Fifteenth international supplement M100-S15. 2005. Clinical and Laboratory Standards Institute, Wayne, PA.
24. Andrews, J, and BSAC Working Party Report on Susceptibility Testing. Determination of inhibitory concentrations. Journal of Antimicrobial Chemotherapy 2001; 48 (Suppl. 1): 4871.
25. Ryffel, C, et al. Sequence comparison of mecA genes isolated from methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Gene 1990; 94: 137138.
26. Prevost, G, Jaulhac, B, Piemont, V. DNA fingerprinting by pulsed-field gel electrophoresis is more effective than ribotyping in distinguishing amongst methicillin-resistant Staphylococcus aureus isolates. Journal of Clinical Microbiology 1992; 30: 967973.
27. Tenover, FC, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. Journal of Clinical Microbiology 1995; 33: 22332239.
28. Biberstein, EL, Jang, SS, Hirsh, DC. Species distribution of coagulase-positive staphylococci in animals. Journal of Clinical Microbiology 1994; 19: 610615.
29. Krogh, HV, Kristensen, S. A study of skin diseases in dogs and cats. II. Microflora of the normal skin of dogs and cats. Nordisk veterinaermedicin 1976; 28: 459463.
30. Wertheim, HFL, et al. The role of nasal carriage in Staphylococus aureus infections. Lancet Infectious Diseases 2005; 5: 751762.
31. Cox, HU, et al. Temporal study of staphylococcal species on healthy dogs. American Journal of Veterinary Research 1988; 49: 747751.
32. Rich, M, Roberts, L. Methicillin-resistant Staphylococcus aureus isolates from companion animals. Veterinary Record 2004; 154: 301.
33. Guardabassi, L, Schwarz, S, Lloyd, DH. Pet animals as reservoirs of antimicrobial-resistant bacteria. Journal of Antimicrobial Chemotherapy 2004; 54: 321332.
34. O'Mahony, R, et al. Methicillin-resistant Staphylococcus aureus (MRSA) isolated from animals and veterinary personnel in Ireland. Veterinary Microbiology 2005; 109: 285296.
35. Loeffler, A, et al. Prevalence of methicillin-resistant Staphylococcus aureus among staff and pets in a small animal referral hospital in the UK. Journal of Antimicrobial Chemotherapy 2005; 56: 692697.
36. Kalmeijer, MD, et al. Surgical site infections in orthopaedic surgery: the effect of mupiricin nasal ointment in a double-blind randomised placebo-controlled study. Clinical Infectious Diseases 2002; 35: 353358.
37. Fridkin, SK, et al. Methicillin-resistant Staphylococcus aureus disease in three communities. New England Journal of Medicine 2005; 352: 14361444.
38. Vandenesch, F, et al. Community acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genomes: worldwide emergence. Emerging Infectious Diseases 2003; 9: 978984.
39. Ho, PL, et al. Community-acquired methicillin-resistant Staphylococcus aureus arrives in Hong Kong. Journal of Antimicrobial Chemotherapy 2004; 54: 845846.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed