Skip to main content
×
×
Home

A re-evaluation of the impact of temperature and climate change on foodborne illness

  • I. R. LAKE (a1), I. A. GILLESPIE (a2), G. BENTHAM (a1), G. L. NICHOLS (a2), C. LANE (a2), G. K. ADAK (a2) and E. J. THRELFALL (a2)...
Summary

The effects of temperature on reported cases of a number of foodborne illnesses in England and Wales were investigated. We also explored whether the impact of temperature had changed over time. Food poisoning, campylobacteriosis, salmonellosis, Salmonella Typhimurium infections and Salmonella Enteritidis infections were positively associated (P<0·01) with temperature in the current and previous week. Only food poisoning, salmonellosis and S. Typhimurium infections were associated with temperature 2–5 weeks previously (P<0·01). There were significant reductions also in the impact of temperature on foodborne illnesses over time. This applies to temperature in the current and previous week for all illness types (P<0·01) except S. Enteritidis infection (P=0·079). Temperature 2–5 weeks previously diminished in importance for food poisoning and S. Typhimurium infection (P<0·001). The results are consistent with reduced pathogen concentrations in food and improved food hygiene over time. These adaptations to temperature imply that current estimates of how climate change may alter foodborne illness burden are overly pessimistic.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A re-evaluation of the impact of temperature and climate change on foodborne illness
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A re-evaluation of the impact of temperature and climate change on foodborne illness
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A re-evaluation of the impact of temperature and climate change on foodborne illness
      Available formats
      ×
Copyright
Corresponding author
*Author for correspondence: Dr I. R. Lake, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK. (Email: I.Lake@uea.ac.uk)
References
Hide All
1. Mead, PS, et al. Food-related illness and death in the United States. Emerging Infectious Diseases 1999; 5: 607625.
2. Adak, GK, Long, SM, O'Brien, SJ. Trends in indigenous foodborne disease and deaths, England and Wales: 1992 to 2000. Gut 2002; 51: 832841.
3. Heyndrickx, M, et al. Routes for salmonella contamination of poultry meat: Epidemiological study from hatchery to slaughterhouse. Epidemiology and Infection 2002; 129: 253265.
4. Kovats, RS, et al. The effect of temperature on food poisoning: a time-series analysis of salmonellosis in ten European countries. Epidemiology and Infection 2004; 132: 443453.
5. Tam, CC, Rodrigues, LC, O'Brien, SJ. The study of infectious intestinal disease in England: what risk factors for presentation to general practice tell us about potential for selection bias in case-control studies of reported cases of diarrhoea. International Journal of Epidemiology 2003; 32: 99–105.
6. Bentham, G, Langford, IH. Environmental temperatures and the incidence of food poisoning in England and Wales. International Journal of Biometeorology 2001; 45: 2226.
7. Zhang, Y, et al. Climate variations and bacillary dysentery in northern and southern cities of China. Journal of Infection 2007; 55: 194200.
8. Checkley, W, et al. Effects of El Nino and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. Lancet 2000; 355: 442450.
9. Singh, RBK, et al. The influence of climate variation and change on diarrheal disease in the Pacific Islands. Environmental Health Perspectives 2001; 109: 155159.
10. D'Souza, RM, et al. Does ambient temperature affect foodborne disease? Epidemiology 2004; 15: 8692.
11. McMichael, AJ, Woodruff, RE, Hales, S. Climate change and human health: present and future risks. Lancet 2006; 367: 859869.
12. Ebi, KL, et al. Climate change and human health impacts in the United States: an update on the results of the U.S. National Assessment. Environmental Health Perspectives 2006; 114: 13181324.
13. FoodNet. Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food – 10 states, United States, 2005. Morbidity and Mortality Weekly Report 2005; 55: 392395.
14. Enter-net. International trends in Salmonella serotypes 1998–2003 – a surveillance report from the enter-net international surveillance network. Eurosurveillance 2004; 9: 4547.
15. Wall, P, et al. Food poisoning: notifications, laboratory reports, and outbreaks – where do the statistics come from and what do they mean? Communicable Disease Report Review 1996; 6: R93–R101.
16. Health Protection Agency. Pilot of enhanced enteric fever surveillance in England, Wales, and Northern Ireland: 1 May 2006–30 April 2007. London: Health Protection Agency; 2008.
17. Atkinson, P, Maguire, H. Is food poisoning a clinical or a laboratory diagnosis? A survey of local authority practices in the South Thames region. Communicable Disease and Public Health 1998; 1: 161164.
18. Parker, DE, Legg, TP, Folland, CK. A new daily central England temperature series, 1772–1991. International Journal of Climatology 1992; 12: 317342.
19. Wheeler, JM, et al. Study of infectious intestinal diseases in England: rates in the community presenting to general practice and reported to nation surveillance. British Medical Journal 1999; 318: 10461050.
20. Humphrey, TJ, et al. Numbers of Salmonella enteritidis in the contents of naturally contaminated hens' eggs. Epidemiology and Infection 1991; 106: 489496.
21. McEvoy, JM, et al. The prevalence of Salmonella spp. in bovine faecal, rumen and carcass samples at a commercial abattoir. Journal of Applied Microbiology 2003; 94: 693700.
22. Kinsella, KJ, et al. The survival of Salmonella enterica serovar Typhimurium DT104 and total viable counts on beef surfaces at different relative humidities and temperatures. Journal of Applied Microbiology 2009; 106: 171180.
23. Food Standards Agency. A report of the study of infectious intestinal disease in England. London: The Stationery Office, 2000.
24. Gillespie, IA, et al. Foodborne general outbreaks of Salmonella Enteritidis phage type 4 infection, England and Wales, 1992–2002: where are the risks? Epidemiology and Infection 2005; 133: 795801.
25. Advisory Committee on the Microbiological Safety of Food. Second report on Salmonella in eggs. London: The Stationery Office, 2001.
26. Food Standards Agency. Salmonella contamination of UK-produced shell eggs on retail sale. Food Survey Information Sheet, 2004, 50/04.
27. Cutter, CN, Rivera-Betancourt, M. Interventions for the reduction of Salmonella Typhimurium DT 4 and non-O157:H7 enterohemorrhagic Escherichia coli on beef surfaces. Journal of Food Protection 2000; 63: 13261332.
28. Adams, A. Food safety: the final solution for the hotel and catering industry? British Food Journal 1995; 97: 1923.
29. National Statistics. Living in Britain – Results from the 2002 General Household Survey. London: The Stationery Office; 2004. Report No.: 31.
30. House of Commons. Hansard 21 January 1986, volume 90, column 190. London, 1986.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: -
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed