Skip to main content Accessibility help
×
Home

Serotype distribution of Streptococcus pneumoniae causing invasive disease in the Republic of Ireland

  • I. VICKERS (a1) (a2), M. FITZGERALD (a3), S. MURCHAN (a3), S. COTTER (a3), D. O'FLANAGAN (a3), M. CAFFERKEY (a1) (a2) and H. HUMPHREYS (a2) (a4)...

Summary

The 7-valent pneumococcal conjugate vaccine (PCV7) was included in the routine infant immunization schedule in Ireland in September 2008. We determined the serotype of 977 S. pneumoniae isolates causing invasive disease between 2000–2002 and 2007–2008, assessed for the presence of the recently described serotype 6C and determined the susceptibility of isolates during 2007–2008 to penicillin and cefotaxime. Serotype 14 was the most common serotype during both periods and 7·7% of isolates previously typed as serotype 6A were serotype 6C. During 2000–2002 and 2007–2008, PCV7 could potentially have prevented 85% and 74% of invasive pneumococcal disease in the target population (i.e. children aged <2 years), respectively. The level of penicillin non-susceptibility was 17% in 2007–2008. Ongoing surveillance of serotypes is required to determine the impact of PCV7 in the Irish population and to assess the potential of new vaccines with expanded valency.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Serotype distribution of Streptococcus pneumoniae causing invasive disease in the Republic of Ireland
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Serotype distribution of Streptococcus pneumoniae causing invasive disease in the Republic of Ireland
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Serotype distribution of Streptococcus pneumoniae causing invasive disease in the Republic of Ireland
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr I. Vickers, Epidemiology and Molecular Biology Unit and Irish Meningococcal and Meningitis Reference Laboratory, Children's University Hospital, Temple St, Dublin, Ireland. (Email: imelda.vickers@cuh.ie)

References

Hide All
1.Scott, JA, et al. Serogroup-specific epidemiology of Streptococcus pneumoniae: associations with age, sex, and geography in 7,000 episodes of invasive disease. Clinical Infectious Diseases 1996; 22: 973981.
2.Hausdorff, WP, Feikin, DR, Klugman, KP. Epidemiological differences among pneumococcal serotypes. Lancet Infectious Diseases 2005; 5: 8393.
3.Park, IH, et al. Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. Journal of Clinical Microbiology 2007; 45: 12251233.
4.Jin, P, et al. First report of putative Streptococcus pneumoniae serotype 6D among nasopharyngeal isolates from Fijian children. Journal of Infectious Diseases 2009; 200: 13751380.
5.Yu, J, et al. A rapid pneumococcal serotyping system based on monoclonal antibodies and PCR. Journal of Medical Microbiology 2008; 57: 171178.
6.Goldblatt, D, et al. Antibody responses to nasopharyngeal carriage of Streptococcus pneumoniae in adults: a longitudinal household study. Journal of Infectious Diseases 2005; 192: 387393.
7.European Centre for Disease Prevention and Control (ECDC). Use of pneumococcal polysaccharide vaccine for subjects over 65 years of age during an inter-pandemic period. Technical report of the scientific panel on vaccines and immunisation, Stockholm, Sweden, 2007, pp. 119.
8.Lexau, CA, et al. Changing epidemiology of invasive pneumococcal disease among older adults in the era of pediatric pneumococcal conjugate vaccine. Journal of the American Medical Association 2005; 294: 20432051.
9.Hausdorff, WP, et al. Pneumococcal serotype epidemiology. In: Siber, G, Klugman, K, Makela, PH, eds. Pneumococcal Vaccines: the Impact of Conjugate Vaccine: Washington, DC: ASM Press, 2008, pp. 139160.
10.Sniadack, DH, et al. Potential interventions for the prevention of childhood pneumonia: geographic and temporal differences in serotype and serogroup distribution of sterile site pneumococcal isolates from children – implications for vaccine strategies. Pediatric Infectious Diseases Journal 1995; 14: 503510.
11.Forsgren, A, Riesbeck, K, Janson, H. Protein D of Haemophilus influenzae: a protective nontypeable H. influenzae antigen and a carrier for pneumococcal conjugate vaccines. Clinical Infectious Diseases 2008; 46: 726731.
12.Black, S, et al. Surveillance for invasive pneumococcal disease during 2000–2005 in a population of children who received 7-valent pneumococcal conjugate vaccine. Pediatric Infectious Diseases Journal 2007; 26: 771777.
13.Whitney, CG, et al. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. New England Journal of Medicine 2003; 348: 17371746.
14.Musher, DM. Pneumococcal vaccine – direct and indirect (‘herd’) effects. New England Journal of Medicine 2006; 354: 15221524.
15.Dagan, R, et al. Reduction of nasopharyngeal carriage of pneumococci during the second year of life by a heptavalent conjugate pneumococcal vaccine. Journal of Infectious Diseases 1996; 174: 12711278.
16.Isaacman, DJ, et al. Indirect effects associated with widespread vaccination of infants with heptavalent pneumococcal conjugate vaccine (PCV7; Prevnar). Vaccine 2007; 25: 24202427.
17.Steenhoff, AP, et al. Emergence of vaccine-related pneumococcal serotypes as a cause of bacteremia. Clinical Infectious Diseases 2006; 42: 907914.
18.Smart, LE, Dougall, AJ, Girdwood, RW. Pneumococcal serotyping. Journal of Infection 1989; 18: 296298.
19.Park, IH, et al. Genetic basis for the new pneumococcal serotype, 6C. Infection and Immunity 2007; 75: 44824489.
20.Mavroidi, A, et al. Evolutionary genetics of the capsular locus of serogroup 6 pneumococci. Journal of Bacteriology 2004; 186: 81818192.
21.Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; eighteenth informational supplement. CLSI document M100-S18. Wayne, PA, USA: CLSI, 2008.
22.Clarke, P, et al. Antimicrobial susceptibility of invasive isolates of Streptococcus pneumoniae in Ireland. Clinical Microbiology and Infection 2004; 10: 657659.
23.Brueggemann, AB, et al. Temporal and geographic stability of the serogroup-specific invasive disease potential of Streptococcus pneumoniae in children. Journal of Infectious Diseases 2004; 190: 12031211.
24.Bennett, D, et al. Penicillin susceptibility and epidemiological typing of invasive pneumococcal isolates in the Republic of Ireland. Journal of Clinical Microbiology 2003; 41: 36413648.
25.Sleeman, K, et al. Invasive pneumococcal disease in England and Wales: vaccination implications. Journal of Infectious Diseases 2001; 183: 239246.
26.Ihekweazu, CA, et al. Trends in incidence of pneumococcal disease before introduction of conjugate vaccine: South West England, 1996–2005. Epidemiology and Infection 2008; 136: 10962002.
27.Berg, S, et al. Serotypes of Streptococcus pneumoniae isolated from blood and cerebrospinal fluid related to vaccine serotypes and to clinical characteristics. Scandinavian Journal of Infectious Diseases 2006; 38: 427432.
28.Liu, Y, et al. Serotype distribution and antimicrobial resistance patterns of Streptococcus pneumoniae isolated from children in China younger than 5 years. Diagnostic Microbiology and Infectious Diseases 2008; 61: 256263.
29.Marchese, A, et al. Antibiotic susceptibility and serotype distribution in Streptococcus pneumoniae circulating in Italy: results of the SEMPRE surveillance study (2000–2002). International Journal of Antimicrobial Agents 2005; 26: 138145.
30.Brueggemann, AB, et al. Clonal relationships between invasive and carriage Streptococcus pneumoniae and serotype- and clone-specific differences in invasive disease potential. Journal of Infectious Diseases 2003; 187: 14241432.
31.Moore, MR, et al. Population snapshot of emergent Streptococcus pneumoniae serotype 19A in the United States, 2005. Journal of Infectious Diseases 2008; 197: 10161027.
32.Critchley, IA, et al. Prevalence of serotype 19A Streptococcus pneumoniae among isolates from U.S. children in 2005–2006 and activity of faropenem. Antimicrobial Agents and Chemotherapy 2008; 52: 26392643.
33.Hwa Choi, E, et al. Streptococcus pneumoniae serotype 19A in children, South Korea. Emerging Infectious Diseases 2008; 14: 275281.
34.Dagan, R, et al. Introduction and proliferation of multidrug-resistant Streptococcus pneumoniae serotype 19A clones that cause acute otitis media in an unvaccinated population. Journal of Infectious Diseases 2009; 199: 776785.
35.Hermans, PW, et al. Low prevalence of recently discovered pneumococcal serotype 6C isolates among healthy Dutch children in the pre-vaccination era. Vaccine 2008; 26: 449450.
36.Carvalho Mda, G, et al. PCR-based quantitation and clonal diversity of the current prevalent invasive serogroup 6 pneumococcal serotype, 6C, in the United States in 1999 and 2006 to 2007. Journal of Clinical Microbiology 2009; 47: 554559.
37.Marimon, JM, et al. Prevalence and molecular characterization of Streptococcus pneumoniae serotype 6C causing invasive disease in Gipuzkoa, northern Spain, 1990–2009. European Journal of Clinical Microbiology and Infectious Diseases. Published online: 14 May 2010. doi:10.1007/s10096-010-0947-6.
38.Tocheva, AS, et al. Increase in serotype 6C pneumococcal carriage, United Kingdom. Emerging Infectious Diseases 2010; 16: 154155.
39.Nunes, S, et al. Temporal trends and molecular epidemiology of recently described serotype 6C of Streptococcus pneumoniae. Journal of Clinical Microbiology 2009; 47: 472474.
40.Hausdorff, WP, et al. Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. Clinical Infectious Diseases 2000; 30: 100121.
41.Fenoll, A, et al. Temporal trends of invasive Streptococcus pneumoniae serotypes and antimicrobial resistance patterns in Spain from 1979 to 2007. Journal of Clinical Microbiology 2009; 47: 10121020.
42.Hak, E, et al. Rationale and design of CAPITA: a RCT of 13-valent conjugated pneumococcal vaccine efficacy among older adults. Netherlands Journal of Medicine 2008; 66: 378383.
43.Christenson, B, et al. Effects of a large-scale intervention with influenza and 23-valent pneumococcal vaccines in adults aged 65 years or older: a prospective study. Lancet 2001; 357: 10081011.

Keywords

Serotype distribution of Streptococcus pneumoniae causing invasive disease in the Republic of Ireland

  • I. VICKERS (a1) (a2), M. FITZGERALD (a3), S. MURCHAN (a3), S. COTTER (a3), D. O'FLANAGAN (a3), M. CAFFERKEY (a1) (a2) and H. HUMPHREYS (a2) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed