Skip to main content Accessibility help
×
×
Home

Serum anti-tetanus and measles antibody titres in Ugandan children aged 4 months to 6 years: implications for vaccine programme

  • Lenesha Warrener (a1), Josephine Bwogi (a2), Nick Andrews (a3), Dhanraj Samuel (a1), Theopista Kabaliisa (a2), Henry Bukenya (a2), Kevin Brown (a1), Martha H Roper (a4), David A Featherstone (a5) and David Brown (a1) (a6)...

Abstract

To study the antibody response to tetanus toxoid and measles by age following vaccination in children aged 4 months to 6 years in Entebbe, Uganda. Serum samples were obtained from 113 children aged 4–15 months, at the Mother-Child Health Clinic (MCHC), Entebbe Hospital and from 203 of the 206 children aged between 12 and 75 months recruited through the Outpatients Department (OPD). Antibodies to measles were quantified by plaque reduction neutralisation test (PRNT) and with Siemens IgG EIA. VaccZyme IgG EIA was used to quantify anti-tetanus antibodies. Sera from 96 of 113 (85.0%) children attending the MCHC contained Measles PRNT titres below the protective level (120 mIU/ml). Sera from 24 of 203 (11.8%) children attending the OPD contained PRNT titres <120 mIU/ml. There was no detectable decline in anti-measles antibody concentrations between 1 and 6 years. The anti-tetanus antibody titres in all 113 children attending MCHC and in 189 of 203 (93.1%) children attending the OPD were >0.15 IU/ml by EIA, a level considered protective. The overall concentration of anti-tetanus antibody was sixfold higher in children under 12 months compared with the older children, with geometric mean concentrations of 3.15 IU/ml and 0.49 IU/ml, respectively. For each doubling in age between 4 and 64 months, the anti-tetanus antibody concentration declined by 50%. As time since the administration of the third DTP vaccination doubled, anti-tetanus antibody concentration declined by 39%. The low measles antibody prevalence in the children presenting at the MCHC is consistent with the current measles epidemiology in Uganda, where a significant number of measles cases occur in children under 1 year of age and earlier vaccination may be indicated. The consistent fall in anti-tetanus antibody titre over time following vaccination supports the need for further vaccine boosters at age 4–5 years as recommended by the WHO.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Serum anti-tetanus and measles antibody titres in Ugandan children aged 4 months to 6 years: implications for vaccine programme
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Serum anti-tetanus and measles antibody titres in Ugandan children aged 4 months to 6 years: implications for vaccine programme
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Serum anti-tetanus and measles antibody titres in Ugandan children aged 4 months to 6 years: implications for vaccine programme
      Available formats
      ×

Copyright

Corresponding author

Author for correspondence: David Brown, E-mail: david.brown@ioc.fiocruz.br

References

Hide All
1.WHO (2015). Immunisation Coverage. Fact sheet No: 378. http://www.who.int/mediacentre/factsheets/fs378/en/; last accessed: 27/11/2015.
2.Liu, L, et al. (2016) Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the sustainable development goals. Lancet 388, 30273035.
3.Burton, A, et al. (2009) WHO and UNICEF estimates of national infant immunization coverage: methods and processes. Bulletin of the World Health Organisation 87, 535541.
4.Immunization in practice, Uganda MOH, 2017 (UNEPI).
5.Mbabazi, WB, et al. (2009) Achieving measles control: lessons from the 2002–2006 measles control strategy for Uganda. Health Policy and Planning 24(4), 261269.
6.Cohen, BJ, et al. (2007) WHO working group on measles plaque reduction neutralization test. Plaque reduction neutralization test for measles antibodies: description of a standardised laboratory method for use in immunogenicity studies of Aerosol vaccination. Vaccine 26(1), 5966.
7.Simonsen, O, et al. (1986) The fall-off in serum concentration of tetanus antitoxin after primary and booster vaccination. Acta Pathologica, Microbiologica et Immunologica Scand 94(2), 7782.
8.Gupta, RK and Siber, GR (1994) Comparative analysis of tetanus antitoxin titers of sera from immunized mice and Guinea pigs determined by toxin neutralization test and enzyme-linked immunosorbent assay. Biologicals 22, 215219.
9.Borrow, R, Balmer, P and Roper, MH (2007) The Immunological Basis for Immunization Series–Module 3: Tetanus Update 2006. Geneva: World Health Organization, pp. 1-36.
10.Chen, RT, et al. (1990) Measles antibody: re-evaluation of protective titers. Journal of Infectious Diseases 162(5), 10361042.
11.Cohen, BJ, Doblas, D and Andrews, N (2008) Comparison of plaque reduction neutralisation test (PRNT) and measles virus-specific IgG EIA for assessing immunogenicity of measles vaccination. Vaccine 26, 63926397.
12.Scobie, H, et al. (2017) Tetanus immunity gaps in children 5–14 years and Men ⩾ 15 years of age revealed by integrated disease serosurveillance in Kenya, Tanzania, and Mozambique. The American Journal of Tropical Medicine and Hygiene 96(2), 415420.
13.van Hoeven, KH, et al. (2008) Comparison of three enzyme-linked immunosorbent assays for detection of immunoglobulin g antibodies to tetanus toxoid with reference standards and the impact on clinical practice. Clinical and Vaccine Immunology 15(12), 17511754.
14.Borrow, R, et al. (2010) Kinetics of antibody persistence following administration of a combination meningococcal serogroup C and Haemophilus influenzae type b conjugate vaccine in healthy infants in the United Kingdom primed with a monovalent meningococcal serogroup C vaccine. Clinical and Vaccine Immunology 17(1), 154159.
15.Itoh, M, Okuno, Y and Hotta, H (2002) Comparative analysis of titres of antibody against measles virus in sera of vaccinated and naturally infected Japanese individuals of different age groups. Journal of Clinical Microbiology 40, 17331738.
16.Palmeira, P, et al. (2012) IgG placental transfer in healthy and pathological pregnancies. Clinical and Developmental Immunology 2012, 985646. http//dx.doi.org/10.1155/2012/985646.
17.Aboud, S, et al. (2000) Levels and avidity of antibodies to tetanus toxoid in children aged 1–15 years in Dar es Salaam and Bagamoyo, Tanzania. Annals of Tropical Paediatrics 20(4), 313322.
18.Weekly Epidemiological Record (2017) Tetanus vaccines: WHO position paper–February 2017. WER 92(6), 5376.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed