Skip to main content Accessibility help
×
×
Home

Syphilis: antibiotic treatment and resistance

  • L. V. STAMM (a1)
Summary

Syphilis is a chronic, multi-stage infectious disease that is usually transmitted sexually by contact with an active lesion of a partner or congenitally from an infected pregnant woman to her fetus. Although syphilis is still endemic in many developing countries, it has re-emerged in several developed countries. The resurgence of syphilis is a major concern to global public health, particularly since the lesions of early syphilis increase the risk of acquisition and transmission of infection with human immunodeficiency virus (HIV). Because there is no vaccine to prevent syphilis, control is mainly dependent on the identification and treatment of infected individuals and their contacts with penicillin G, the first-line drug for all stages of syphilis. The emergence of clinically significant azithromycin resistance in Treponema pallidum subsp. pallidum, the syphilis agent, has resulted in treatment failures, thus precluding the routine use of this second-line drug. Information is presented here on the diagnosis and recommended antibiotic treatment of syphilis and the challenge of macrolide-resistant T. pallidum.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Syphilis: antibiotic treatment and resistance
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Syphilis: antibiotic treatment and resistance
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Syphilis: antibiotic treatment and resistance
      Available formats
      ×
Copyright
Corresponding author
* Address for correspondence: Dr L. V. Stamm, Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435, USA. (Email: lstamm@email.unc.edu)
References
Hide All
1. Stamm, LV, Trott, DJ. Treponema and bovine skin disease: papillomatous digital dermatitis and ulcerative mammary dermatitis. In: Radolf, JD, Lukehart, SA, eds. Pathogenic Treponema Molecular and Cellular Biology. Caister, Norfolk, UK: Academic Press 2006, pp. 403420.
2. Radolf, JD, Pillay, A, Cox, DL. Treponema and Brachyspira, human-associated spirochetes. In: Versalovic, J et al. , eds. Manual of Clinical Microbiology, 10th edn. Washington, DC, ASM Press, 2011, pp. 941963.
3. Giancani, L, Lukehart, SA. The endemic treponematoses. Clinical Microbiology Reviews 2014; 27: 89115.
4. Gottlieb, SL, et al. Toward global prevention of sexually transmitted infections (STIs); the need for STI vaccines. Vaccine 2014; 32: 15271535.
5. Krüger, C, Malleyeck, I. Congenital syphilis: still a serious, under-diagnosed threat for children in resource-poor countries. World Journal of Pediatrics 2010; 6: 125131.
6. Stamm, LV. Global challenge of antibiotic-resistant Treponema pallidum . Antimicrobial Agents and Chemotherapy 2010; 54: 583589.
7. Stamm, LV, Mudrak, B. Old foes, new challenges: syphilis, cholera and TB. Future Microbiology 2013; 8: 177189.
8. Tucker, JD, et al. An expanding syphilis epidemic in China: epidemiology, behavioural risk and control strategies with a focus on low-tier female sex workers and men who have sex with men. Sexually Transmitted Infections 2011; 87 (Suppl. 2): ii1618.
9. Ho, EL, Lukehart, SA. Syphilis: using modern approaches to understand an old disease. Journal of Clinical Investigation 2011; 121: 45844592.
10. Sparling, PF, et al. Clinical manifestations of syphilis. In: Holmes, KK, et al. , eds. Sexually Transmitted Diseases, 4th edn. New York, NY: McGraw Hill, 2008, pp. 661684.
11. Seña, AC, White, BL, Sparling, PF. Novel Treponema pallidum serologic tests: a paradigm shift in syphilis screening for the 21st century. Clinical Infectious Diseases 2010; 51: 700708.
12. Kingston, M, et al. UK national guidelines on the management of syphilis 2008. International Journal of STD and AIDS 2008; 19: 729740.
13. Ghanem, KG, Workowski, KA. Management of adult syphilis. Clinical Infectious Diseases 2011; 53 (Suppl. 3): S110S128.
14. Seña, AC, et al. Response to therapy following treatment of serofast early syphilis patients with benzathine penicillin. Clinical Infectious Diseases 2013; 56: 420422.
15. Workowski, KA, Berman, S. Sexually transmitted diseases treatment guidelines, 2010. Morbidity and Mortality Weekly Reports. Recommendations and Reports 2010; 59: 1110.
16. Katz, KA, Klausner, JD. Azithromycin resistance in Treponema pallidum . Current Opinion in Infectious Diseases 2008; 21: 8391.
17. Stamm, LV. Antibiotic resistance in Treponema pallidum subsp. pallidum, the syphilis agent. In: Embers, ME, ed. The Pathogenic Spirochetes: Strategies for Evasion of Host Immunity and Persistence. New York, NY: Springer Science+Business Media, 2012, pp. 213228.
18. Grimes, M, et al. Two mutations associated with macrolide resistance in Treponema pallidum: increasing prevalence and correlation with molecular strain type in Seattle, Washington. Sexually Transmitted Diseases 2012; 39: 954958.
19. The A2058G Prevalence Workgroup. Prevalence of the 23S rRNA A2058G point mutation and molecular subtypes in Treponema pallidum in the United States, 2007–2009. Sexually Transmitted Diseases 2012; 39: 794798.
20. Li, Z, et al. Two mutations associated with macrolide resistance in Treponema pallidum in Shandong, China. Journal of Clinical Microbiology 2013; 51: 42704271.
21. Marra, CM, et al. Antibiotic selection may contribute to increases in macrolide-resistant Treponema pallidum . Journal of Infectious Diseases 2006; 194: 17711773.
22. Stamm, LV, Bergen, HL. A point mutation associated with bacterial macrolide resistance is present in both 23S rRNA genes of an erythromycin-resistant Treponema pallidum clinical isolate. Antimicrobial Agents and Chemotherapy 2000; 44: 806807.
23. Kiddugavu, MG, et al. Effectiveness of syphilis treatment using azithromycin and/or benzathine penicillin in Rakai, Uganda. Sexually Transmitted Diseases 2005; 32: 16.
24. Hook, EW III, et al. A randomized, comparative pilot study of azithromycin versus benzathine penicillin G for treatment of early syphilis. Sexually Transmitted Diseases 2002; 29: 486490.
25. Riedner, G, et al. Single dose azithromycin versus penicillin G benzathine for the treatment of early syphilis. New England Journal of Medicine 2005; 353: 12361244.
26. Hook, EW III, et al. Phase III equivalence trial of azithromycin versus penicillin for treatment of early syphilis. Journal of Infectious Diseases 2010; 201: 17291735.
27. Lukehart, SA, et al. Macrolide resistance in Treponema pallidum in the United States and Ireland. New England Journal of Medicine 2004; 351: 154158.
28. Chen, XS, et al. High prevalence of azithromycin resistance in Treponema pallidum in geographically different areas of China. Clinical Microbiology and Infection 2013; 19: 975979.
29. Muldoon, EG, et al. Treponema pallidum azithromycin resistance in Dublin, Ireland. Sexually Transmitted Diseases 2012; 39: 784786.
30. Read, P, et al. Azithromycin-resistant syphilis-causing strains in Sydney, Australia: prevalence and risk factors. Journal of Clinical Microbiology 2014; 52: 27762781.
31. Van, Damme K, et al. Evaluation of azithromycin resistance in Treponema pallidum specimens from Madagascar. Sexually Transmitted Diseases 2009; 36: 775776.
32. Müller, EE, Paz-Bailey, G, Lewis, DA. Macrolide resistance testing and molecular subtyping of Treponema pallidum strains from southern Africa. Sexually Transmitted Infections 2012; 88: 470474.
33. Wu, H, et al. Evaluation of macrolide resistance and enhanced molecular typing of Treponema pallidum in patients with syphilis in Taiwan: a prospective multicenter study. Journal of Clinical Microbiology 2012; 50: 22992304.
34. Wu, BR, et al. Multicentre surveillance of prevalence of the 23S rRNA A2058G and A2059G point mutations and molecular subtypes of Treponema pallidum in Taiwan, 2009–2013. Clinical Microbiology and Infection. Published online: 13 February 2014. doi:10.1111/1469–0691.12529.
35. Matějková, P, et al. Macrolide treatment failure in a case of secondary syphilis: a novel A2059G mutation in 23S rRNA gene of Treponema pallidum subsp. Pallidum. Journal of Medical Microbiology 2009; 58: 832836.
36. Tipple, C, McClure, MO, Taylor, GP. High prevalence of macrolide resistant Treponema pallidum strains in a London centre. Sexually Transmitted Infections 2011; 87: 486488.
37. Chen, CY, et al. Detection of the A2058G and A2059G 23S rRNA gene point mutations associated with azithromycin resistance in Treponema pallidum by use of a TaqMan real-time multiplex PCR assay. Journal of Clinical Microbiology 2013; 51: 908913.
38. Fraser, CM, et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 1998; 281: 375388.
39. Mabey, DC, et al. Point-of-care tests to strengthen health systems and save newborn lives: the case of syphilis. PLoS Medicine 2012; 9: e1001233.
40. Castro, AR, et al. Novel point-of-care test for simultaneous detection of nontreponemal and treponemal antibodies in patients with syphilis. Journal of Clinical Microbiology 2010; 48: 46154619.
41. Marra, CM, et al. Enhanced molecular typing of Treponema pallidum: geographical distribution of strain types and association with neurosyphilis. Journal of Infectious Diseases 2010; 202: 13801388.
42. Stamm, LV, Drapp, RL. A synthetic lymph node containing inactivated Treponema pallidum cells elicits strong, antigen-specific humoral and cellular immune responses in mice. Pathogens and Disease 2014; 70: 8894.
43. Cameron, CE, Lukehart, SA. Current status of syphilis vaccine development: need, challenges, prospects. Vaccine 2014; 32: 16021609.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed