Skip to main content Accessibility help

Effects of oral l-carnitine supplementation in racing Greyhounds

  • T S Epp (a1), H H Erickson (a1), J Woodworth (a2) and D C Poole (a1)

l-Carnitine supplementation can stimulate erythropoiesis, reduce exercise-induced plasma lactate concentrations and decrease post-exercise muscle damage. Next to horses, Greyhounds represent the premier animal racing species and perform short-duration, very high-intensity exercise that has the potential to incur substantial muscle damage. Under resting and standard racing conditions (5/16 mile), we tested the novel hypotheses that l-carnitine supplementation in Greyhounds would: (1) elevate haematocrit at rest and immediately post-exercise; (2) reduce peak post-exercise plasma lactate; and (3) reduce indices of muscle damage (plasma creatine phosphokinase, CPK and aspartate aminotransferase, AST). Six conditioned Greyhounds (30.1 ± 1.6 kg) underwent a randomized placebo-controlled crossover study to determine the effects of 6 weeks of l-carnitine supplementation (100 mg kg− 1 of body weight/day) at rest and following a maximal speed 5/16 mile race. In accordance with our hypotheses, l-carnitine elevated resting and immediately post-race haematocrit (control, 60.1 ± 1.7, l-carnitine, 63.6 ± 1.7; P < 0.05) and reduced peak post-race plasma CPK and AST concentrations (both P < 0.05). Those dogs with the highest peak post-exercise plasma CPK concentrations under placebo conditions evidenced the greatest reduction with l-carnitine supplementation (r = 0.99, P < 0.01). However, contrary to our hypotheses, l-carnitine did not change peak post-exercise plasma lactate concentrations (control, 27.0 ± 2.1, l-carnitine, 27.7 ± 1.3; P>0.05). We conclude that l-carnitine supplementation increases the potential for oxygen transport and reduces plasma indicators of muscle damage, CPK and AST in racing Greyhounds.

Corresponding author
*Corresponding author:
Hide All
1Gulewitsch, WKR (1905). Zur Kenntnis der Extraktionsstoffe der Muskeln 2. Mitteilungen uber das Carnitin (extracted substances in muscle, report on carnitine). Hoppe-Seyler's Zeitschrift für Physiologische Chemie 45: 326330.
2Karlic, H and Lohninger, A (2004). Supplementation of l-carnitine in athletes: does it make sense? Nutrition 20: 709715.
3Volek, JS, Kraemer, WJ, Rubin, MR, Gomez, AL, Ratamess, NA and Gaynor, P (2002). l-Carnitine l-tartrate supplementation favorably affects markers of recovery from exercise stress. American Journal of Physiology. Endocrinology and Metabolism. 282: E474E482.
4Brass, EP and Hiatt, WR (1998). The role of carnitine and carnitine supplementation during exercise in man and in individuals with special needs. Journal of the American College of Nutrition 17: 207215.
5Arenas, J, Huertas, R, Campos, Y, Diaz, AE, Villalon, JM and Vilas, E (1994). Effects of l-carnitine on the pyruvate dehydrogenase complex and carnitine palmitoyl transferase activities in muscle of endurance athletes. FEBS Letters 34: 9193.
6Vecchiet, L, Di Lisa, F, Pieralisi, G, Ripari, P, Menabo, R, Giamberardino, MA and Siliprandi, N (1990). Influence of l-carnitine administration on maximal physical exercise. European Journal of Applied Physiology and Occupational Physiology 61: 486490.
7Oyono-Enguelle, S, Freund, H, Ott, C, Gartner, M, Heitz, A, Marbach, J, Maccari, F, Frey, A, Bigot, H and Bach, AC (1988). Prolonged submaximal exercise and l-carnitine in humans. European Journal of Applied Physiology and Occupational Physiology 58: 5361.
8Dragan, IG, Vasiliu, A, Georgescu, E and Eremia, N (1989). Studies concerning chronic and acute effects of l-carnitine in elite athletes. Physiologie 26: 111129.
9Trappe, SW, Costill, DL, Goodpaster, B, Vukovich, MD and Fink, WJ (1994). The effects of l-carnitine supplementation on performance during interval swimming. International Journal of Sports Medicine 15: 181185.
10Matsumura, M, Hatakeyama, S, Koni, I and Mabuchi, H (1998). Effect of l-carnitine and palmitoyl-l-carnitine on erythroid colony formation in fetal mouse liver cell culture. American Journal of Nephrology 18: 355358.
11Giamberardino, MA, Dragani, L, Valente, R, Saggini, R and Vecchiet, L (1996). Effects of prolonged l-carnitine administration on delayed muscle pain and CK release after eccentric effort. International Journal of Sports Medicine 17: 320324.
12Kraemer, WJ, Volek, JS, French, DN, Rubin, MR, Sharman, MJ, Gomez, AL, Ratamess, NA, Newton, RU, Jemiolo, B, Craig, BW and Hakkinen, K (2003). The effects of l-carnitine l-tartrate supplementation on hormonal responses to resistance exercise and recovery. Journal of Strength and Conditioning Research 17: 455462.
13Siliprandi, N, Di Lisa, F and Menabo, R (1990). Clinical use of carnitine past, present and future. Advances in Experimental Medicine and Biology 272: 175181.
14Barnett, C, Costill, DL, Vukovich, MD, Cole, KJ, Goodpaster, BH, Trappe, SW and Fink, WJ (1994). Effect of l-carnitine supplementation on muscle and blood carnitine content and lactate accumulation during high-intensity sprint cycling. International Journal of Sport Nutrition 4: 280288.
15Costell, M and Grisola, S (1993). Effect of carnitine feeding on the levels of heart and skeletal muscle carnitine of elderly mice. FEBS Letters 315: 4346.
16Janssens, GP, Hesta, M, Debal, V, Debraeker, J and De Wilde, RO (2000). l-carnitine supplementation in breeding pigeons: impact on zootechnical performance and carnitine metabolism. Reproduction, Nutrition, Development 40: 535548.
17Rivero, JLL, Sporleder, HP, Quiroz-Rothe, E, Vervuert, I, Coenen, M and Harmeyer, J (2002). Oral l-carnitine combined with training promotes changes in skeletal muscle. Equine Veterinary Journal Supplement 34: 269274.
18Thomson, JA, Green, HJ and Houston, ME (1979). Muscle glycogen depletion patterns in fast twitch fibre subgroups of man during submaximal and supramaximal exercise. Pflugers Archives 379: 105108.
19Gunn, HM (1989). Heart weight and running ability. Journal of Anatomy 167: 225233.
20Poole, DC (1997). Influence of exercise training on skeletal muscle oxygen delivery and utilization. In: Crystal, RG, West, JB, Weibel, ER and Barnes, PJ (eds) The Lung: Scientific Foundations. New York, NY: Raven Press, pp. 19571967.
21Poole, DC and Erickson, HH (2004). Heart and vessels: Function during exercise and response to training. In: Hinchcliff, KW, Geor, RJ and Kaneps, AJ (eds) Equine Sports Medicine and Surgery – Basic and Clinical Sciences of the Equine Athlete. New York, NY: WB Saunders, pp. 699727.
22Klapcinska, B, Iskra, J, Poprzecki, S and Grzesiok, K (2001). The effects of sprint (300 m) running on plasma lactate, uric acid, creatine kinase and lactate dehydrogenase in competitive hurdlers and untrained men. The Journal of Sports Medicine and Physical Fitness 41: 306311.
23Parvin, R and Pande, SV (1977). Microdetermination of ( − )carnitine and carnitine acetyltransferase activity. Analytical Biochemistry 79: 190201.
24Dunnett, M, Harris, RC, Dunnett, CE and Harris, PA (2002). Plasma carnosine concentration: diurnal variation and effects of age, exercise and muscle damage. Equine Veterinary Journal Supplement 34: 283287.
25Constantin-Teodosiu, D, Cederblad, G and Hultman, E (1992). PDC activity and acetyl group accumulation in skeletal muscle during prolonged exercise. Journal of Applied Physiology 73: 24032407.
26Stray-Gundersen, J, Musch, TI, Haidet, GC, Swain, DP, Ordway, GA and Mitchell, JH (1986). The effect of pericardiectomy on maximal oxygen consumption and maximal cardiac output in untrained dogs. Circulation Research 58: 523530.
27Gledhill, N (1982). Blood doping and related issues: a brief review. Medicine and Science in Sports and Exercise 14: 183189.
28Chanoit, GP, Lefebvre, HP, Orcel, K, Laroute, V, Toutain, PL and Braun, JP (2001). Use of plasma creatine kinase pharmacokinetics to estimate the amount of exercise-induced muscle damage in Beagles. American Journal of Veterinary Research 62: 13751380.
29Piercy, RJ, Hinchcliff, KW, DiSilvestro, RA, Reinhart, GA, Baskin, CR, Hayek, MG, Burr, JR and Swenson, RA (2000). Effect of dietary supplements containing antioxidants on attenuation of muscle damage in exercising sled dogs. American Journal of Veterinary Research 61: 14381445.
30Clarkson, PM, Kearns, AK, Rouzier, P, Rubin, R and Thompson, PD (2006). Serum creatine kinase levels and renal function measures in exertional muscle damage. Medicine and Science in Sports and Exercise 38: 623627.
31Lindenfeld, J, Weil, JV, Travis, VL and Horwitz, LD (2005). Regulation of oxygen delivery during induced polycythemia in exercising dogs. American Journal of Physiology. Heart and Circulation Physiology 289: H1821H1825.
32Wagner, PD, Erickson, BK, Kubo, K, Hiraga, A, Kai, M, Yamaya, Y, Richardson, R and Seaman, J (1995). Maximum oxygen transport and utilization before and after splenectomy. Equine Veterinary Journal Supplement 18: 8289.
33Dane, DM, Hsia, CC, Wu, EY, Hogg, RT, Hogg, DC, Estrera, AS and Johnson, RL Jr (2006). Splenectomy impairs diffusive oxygen transport in the lung of dogs. Journal of Applied Physiology 101: 289297.
34Hellsten, Y, Hansson, HA, Johnson, L, Frandsen, U and Sjodin, B (1996). Increased expression of xanthine oxidase and insulin-like growth factor I (IGF-I) immunoreactivity in skeletal muscle after strenuous exercise in humans. Acta Physiologica Scandinavica 157: 191197.
35Vina, J, Gimeno, A, Sastre, J, Desco, C, Asensi, M, Pallardo, FV, Cuesta, A, Ferrero, JA, Terada, LS and Repine, JE (2000). Mechanism of free radical production in exhaustive exercise in humans and rats; role of xanthine oxidase and protection by allopurinol. IUBMB Life 49: 539544.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Equine and Comparative Exercise Physiology
  • ISSN: 1478-0615
  • EISSN: 1479-070X
  • URL: /core/journals/equine-and-comparative-exercise-physiology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed