Skip to main content
×
×
Home

Produits de matrices aléatoires et applications aux propriétés géometriques des sous-groupes du groupe linéaire

  • Yves Guivarc'h (a1)
Abstract
Abstract

Using the asymptotic properties of products of random matrices we study some properties of the subgroups of the linear group. These properties are centered around the theorem of J. Tits giving the existence of free subgroups in linear groups.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Produits de matrices aléatoires et applications aux propriétés géometriques des sous-groupes du groupe linéaire
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Produits de matrices aléatoires et applications aux propriétés géometriques des sous-groupes du groupe linéaire
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Produits de matrices aléatoires et applications aux propriétés géometriques des sous-groupes du groupe linéaire
      Available formats
      ×
Copyright
References
Hide All
[1]Bougerol P. & Lacroix J.. Products of Random Matrices with Applications to Schrödinger Operators. Birkhauser: 1986.
[2]Chevalley C.. Théorie des Groupes de Lie. Hermann: 1968.
[3]Cohen J., Kesten H. & Newman C., eds., Random matrices and applications. Contemp. Math. Amer. Math. Soc. 50 (1986).
[4]Dixon J. D.. Free subgroups of linear groups, pp. 4556. Lecture Notes in Math. 319 Springer: 1973.
[5]Furstenberg H.. Boundary theory and stochastic processes on homogeneous spaces. Proc. Symp. Pure Math. 6 (1972), 193229.
[6]Glaner S.. Proximal flows. Springer Lecture Notes 517 (1976).
[7]Goldsheid I. & Margulis G. A.. Simplicity of the Liapunoff spectrum for products of random matrices. 35 (1987), 309313.
[8]Guimier F.. Simplicité du spectre de Liapunoff d'un produit de matrices aléatoires sur un corps ultramétrique. C.R.A.S. Paris (1989), (à paraître).
[9]Guivarc'h Y.. Quelques propriétés asymptotiques des produits de matrices aléatoires. Springer Lecture Notes 774 (1980) 176250.
[10]Guivarc'h Y. & Raugi A.. Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence. Z. Wahr. 69 (1985) 187242.
[11]Guivarc'h Y.. Croissance polynomiale et périodes des fonctions harmoniques. Bulletin Soc. Math. France 101 (1973), 333379.
[12]Guivarc'h Y. & Raugi A.. Propriétés de contraction d'un semi–groupe de matrices inversibles. Israël J. Math. 65 (2) (1989), 165196.
[13]Guivarc'h Y. & Raugi A.. Quelques remarques sur les produits de matrices aléatoires indépendantes. C.R.A.S. 304 série 1, 8 (1987), 199201.
[14]de la Harpe P.. Free groups in linear groups. L'Enseignement Math. 29 (1983), 129144.
[15]de la Harpe P.. Reduced C*–algebras of discrete groups which are simple with a unique trace. pp. 248251. Lecture Notes 1132 Springer–Verlag.
[16]Ledrappier F.. Poisson boundaries of discrete groups of matrices. Israël J. Math. 50 (4) (1985).
[17]Le Page E.. Théorèmes limites pour les produits de matrices aléatoires. Springer Lecture Notes 928 (1982), 258303.
[18]Margulis G. A.. Arithméticity of the irreductible lattices in the semi–simple groups of rank greater than one. Invent. Math. 76 (1984), 93120.
[19]Margulis G. A. & Soifer G. A.. A criterion for the existence of maximal subgroups of infinite index in a finitely generated linear group. Soviet Math. Dokl. 18 (3) (1977), 847851.
[20]Moore C. C.. Amenable subgroups of semi–simple groups and proximal flows. Israël J. Math. 34 (1979), 121138.
[21]Raghunathan M. S.. A proof of Oseledet multiplicative theorem. Israël J. Math. 32 (1979) 356362.
[22]Sullivan D.. The density at infinity of a discrete group of hyperbolic motions. Publ. Math. I.H.E.S. 50.
[23]Tits J.. Free subgroups in linear groups. J. of Algebra 20 (1972), 250270.
[24]Wehrfritz B. A. F.. Infinite linear groups. Ergebnisse der Mathemalik (1973).
[25]Weil A.. Basic number theory. Grundlehren der Math Wiss. 144 Springer: 1967.
[26]Zimmer R.. Ergodic theory and semi–simple groups. Birkhauser: 1984.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 84 *
Loading metrics...

Abstract views

Total abstract views: 166 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd January 2018. This data will be updated every 24 hours.