Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Brunel, Antoine 2002. Le théorème ergodique pour les opérateurs positifs sur les espaces Lp (1<p<∞) revisité. Comptes Rendus Mathematique, Vol. 334, Issue. 3, p. 205.


    ×

Théorème ergodique pour les opérateurs positifs à moyennes bornées sur les espaces Lp(1 < p < ∞)

  • Antoine Brunel (a1)
  • DOI: http://dx.doi.org/10.1017/S0143385700006684
  • Published online: 01 September 2008
Abstract
Abstract

The main result is a dominated ergodic theorem for a linear positive operator T on Lp(1 > p > ∞); the theorem holds if, and only if, T is Cesaro-bounded.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]Mustafa A. Akcoglu . A pointwise ergodic theorem in Lp-spaces. Canad. J. Math. 27 (1975), 10751082.

[3]Yves Derriennic & Michael Lin . On invariant measures and ergodic theorems for positive operators. J Funct. Anal. 13 (1973) 252267.

[4]Richard Emilion . Mean bounded operators and mean ergodic theorems. J. Funct. Anal. 61 (1985), 114.

[6]Donald L. Burkholder . Maximal inequalities as necessary conditions for a.e. convergence. Z. Wahrsch. und Verw. Gebiete 3 (1964), 7588.

[8]Edwin Hewitt and Karl Stromberg . Real and Abstract Analysis. Springer, 1965.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Ergodic Theory and Dynamical Systems
  • ISSN: 0143-3857
  • EISSN: 1469-4417
  • URL: /core/journals/ergodic-theory-and-dynamical-systems
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax