Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-27T18:17:24.546Z Has data issue: false hasContentIssue false

Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method∗∗

Published online by Cambridge University Press:  03 March 2014

Giovany M. Figueiredo
Affiliation:
Faculdade de Matemática, Universidade Federal do Pará, 66.075-110 Belém, Pará, Brazil
João R. Santos Júnior
Affiliation:
Faculdade de Matemática, Universidade Federal do Pará, 66.075-110 Belém, Pará, Brazil
Get access

Abstract

In this paper we are concerned with questions of multiplicity and concentration behavior of positive solutions of the elliptic problem

$$ (P_{\var})\hspace*{4cm} \left\{ \begin{array}{rcl} \mathcal{L}_{\var}u=f(u) \ \ \mbox{in} \ \ \R^{3},\\[1.5mm] u>0 \ \ \mbox{in} \ \ \R^{3},\\[1.5mm] u \in H^{1}(\R^3), \end{array} \right. $$(Pε)ℒεu=f(u)inIR3,u>0inIR3,u∈H1(IR3),

where ε is a small positive parameter, f : ℝ → ℝ is a continuous function, $$ \mathcal{L}_{\var} $$ℒε is a nonlocal operator defined by

$$ \mathcal{L}_{\var}u=M\left(\dis\frac{1}{\var}\int_{\R^{3}}|\nabla u|^{2}+\frac{1}{\var^{3}}\dis\int_{\R^{3}}V(x)u^{2}\right)\left[-\var^{2}\Delta u + V(x)u \right], $$ℒεu=M1ε∫IR3|∇u|2+1ε3∫IR3V(x)u2[−ε2Δu+V(x)u],

M : IR+ → IR+ and V : IR3 → IR are continuous functions which verify some hypotheses.

Type
Research Article
Copyright
© EDP Sciences, SMAI, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, C.O. and Corrêa, F.J.S.A., On existence of solutions for a class of problem involving a nonlinear operator. Commun. Appl. Nonlinear Anal. 8 (2001) 4356. Google Scholar
Alves, C.O., Corrêa, F.J.S.A. and Figueiredo, G.M., On a class of nonlocal elliptic problems with critical growth. Differ. Equ. Appl. 2 (2010) 409417. Google Scholar
Alves, C.O., Corrêa, F.J.S.A. and Ma, T.F., Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49 (2005) 8593. Google Scholar
Alves, C.O. and Figueiredo, G.M., Nonlinear perturbations of a periodic Kirchhoff equation in IRN. Nonlinear Anal. 75 (2012) 27502759. Google Scholar
Alves, C.O. and Figueiredo, G.M., Multiplicity of positive solutions for a quasilinear problem in IRN via penalization method. Adv. Nonlinear Stud. 5 (2005) 551572. Google Scholar
Alves, C.O., Figueiredo, G.M. and Furtado, M.F., Multiple solutions for a Nonlinear Schrödinger Equation with Magnetic Fields. Commun. Partial Differ. Equ. 36 (2011) 122. Google Scholar
Ambrosetti, A., Badiale, M. and Cingolani, S., Semiclassical stats of nonlinear Schrodinger equations with potentials. Arch. Ration. Mech. Anal. 140 (1997) 285300. Google Scholar
Ambrosetti, A., Malchiodi, A. and Secchi, S., Multiplicity results for some nonlinear Schorodinger equations with potentials. Arch. Ration. Mech. Anal. 159 (2001) 253271. Google Scholar
Anelo, G., A uniqueness result for a nonlocal equation of Kirchhoff equation type and some related open problem. J. Math. Anal. Appl. 373 (2011) 248251. Google Scholar
G. Anelo, On a pertubed Dirichlet problem for a nonlocal differential equation of Kirchhoff type. BVP (2011) 891430.
Cingolani, S. and Lazzo, M., Multiple positive solutions to nonlinear Schrodinger equations with competing potential functions. J. Differ. Equ. 160 (2000) 118138. Google Scholar
Del Pino, M. and Felmer, P.L., Local Mountain Pass for semilinear elliptic problems in unbounded domains. Calc. Var. 4 (1996) 121137. Google Scholar
Ekeland, I., On the variational principle. J. Math. Anal. Appl. 47 (1974) 324353. Google Scholar
Figueiredo, G.M. and Santos Junior, J.R., Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth. Differ. Integral Equ. 25 (2012) 853868. Google Scholar
Floer, A. and Weinstein, A., Nonspreading wave packets for the cubic Schrodinger equation with a bounded potential. J. Funct. Anal. 69 (1986) 397408. Google Scholar
He, X. and Zou, W., Existence and concentration of positive solutions for a Kirchhoff equation in IR3. J. Differ. Equ. 252 (2012) 18131834. Google Scholar
G. Kirchhoff, Mechanik. Teubner, Leipzig (1883).
Li, Y., Li, F. and Shi, J., Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253 (2012) 22852294. Google Scholar
Li, G., Some properties of weak solutions of nonlinear scalar field equations. Ann. Acad. Sci. Fenincae Ser. A 14 (1989) 2736. Google Scholar
J.L. Lions, On some questions in boundary value problems of mathematical physics International Symposium on Continuum, Mech. Partial Differ. Equ. Rio de Janeiro(1977). In vol. 30 of Math. Stud. North-Holland, Amsterdam (1978) 284–346.
Ma, T.F., Remarks on an elliptic equation of Kirchhoff type. Nonlinear Anal. 63 (2005) 19671977. Google Scholar
Moser, J., A new proof de Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13 (1960) 457468. Google Scholar
Nie, Jianjun and Wu, Xian, Existence and multiplicity of non-trivial solutions for Schródinger–Kirchhoff equations with radial potential. Nonlinear Analysis 75 (2012) 34703479. Google Scholar
Rabinowitz, P.H., On a class of nonlinear Schrodinger equations. Z. Angew Math. Phys. 43 (1992) 2742. Google Scholar
Szulkin, A. and Weth, T., Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257 (2009) 38023822. Google Scholar
A. Szulkin and T. Weth, The method of Nehari manifold, Handbook of Nonconvex Analysis and Applications, edited by D.Y. Gao and D. Montreanu. International Press, Boston (2010) 597–632.
Wang, J., Tian, L., Xu, J. and Zhang, F., Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253 (2012) 23142351. Google Scholar
M. Willem, Minimax Theorems. Birkhauser (1996).
Wu, Xian, Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in RN. Nonlinear Anal. RWA 12 (2011) 12781287. Google Scholar