Skip to main content
×
Home
    • Aa
    • Aa

Boundary observability for the space semi-discretizations of the 1 – d wave equation

  • Juan Antonio Infante (a1) and Enrique Zuazua (a1)
Abstract

We consider space semi-discretizations of the 1-d wave equation in a bounded interval with homogeneous Dirichlet boundary conditions. We analyze the problem of boundary observability, i.e., the problem of whether the total energy of solutions can be estimated uniformly in terms of the energy concentrated on the boundary as the net-spacing h → 0. We prove that, due to the spurious modes that the numerical scheme introduces at high frequencies, there is no such a uniform bound. We prove however a uniform bound in a subspace of solutions generated by the low frequencies of the discrete system. When h → 0 this finite-dimensional spaces increase and eventually cover the whole space. We thus recover the well-known observability property of the continuous system as the limit of discrete observability estimates as the mesh size tends to zero. We consider both finite-difference and finite-element semi-discretizations.

We consider space semi-discretizations of the 1-d wave equation in a bounded interval with homogeneous Dirichlet boundary conditions. We analyze the problem of boundary observability, i.e., the problem of whether the total energy of solutions can be estimated uniformly in terms of the energy concentrated on the boundary as the net-spacing h → 0. We prove that, due to the spurious modes that the numerical scheme introduces at high frequencies, there is no such a uniform bound. We prove however a uniform bound in a subspace of solutions generated by the low frequencies of the discrete system. When h → 0 this finite-dimensional spaces increase and eventually cover the whole space. We thus recover the well-known observability property of the continuous system as the limit of discrete observability estimates as the mesh size tends to zero. We consider both finite-difference and finite-element semi-discretizations.

    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Boundary observability for the space semi-discretizations of the 1 – d wave equation
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Boundary observability for the space semi-discretizations of the 1 – d wave equation
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Boundary observability for the space semi-discretizations of the 1 – d wave equation
      Available formats
      ×
Copyright
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

ESAIM: Mathematical Modelling and Numerical Analysis
  • ISSN: 0764-583X
  • EISSN: 1290-3841
  • URL: /core/journals/esaim-mathematical-modelling-and-numerical-analysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: