Skip to main content
×
Home
    • Aa
    • Aa

Modelling of Miscible Liquids with the Korteweg Stress

  • Ilya Kostin (a1), Martine Marion (a2), Rozenn Texier-Picard (a3) and Vitaly A. Volpert (a3)
Abstract

When two miscible fluids, such as glycerol (glycerin) and water, are brought in contact, they immediately diffuse in each other. However if the diffusion is sufficiently slow, large concentration gradients exist during some time. They can lead to the appearance of an “effective interfacial tension”. To study these phenomena we use the mathematical model consisting of the diffusion equation with convective terms and of the Navier-Stokes equations with the Korteweg stress. We prove the global existence and uniqueness of the solution for the associated initial-boundary value problem in a two-dimensional bounded domain. We study the longtime behavior of the solution and show that it converges to the uniform composition distribution with zero velocity field. We also present numerical simulations of miscible drops and show how transient interfacial phenomena can change their shape.

    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modelling of Miscible Liquids with the Korteweg Stress
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Modelling of Miscible Liquids with the Korteweg Stress
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Modelling of Miscible Liquids with the Korteweg Stress
      Available formats
      ×

When two miscible fluids, such as glycerol (glycerin) and water, are brought in contact, they immediately diffuse in each other. However if the diffusion is sufficiently slow, large concentration gradients exist during some time. They can lead to the appearance of an “effective interfacial tension”. To study these phenomena we use the mathematical model consisting of the diffusion equation with convective terms and of the Navier-Stokes equations with the Korteweg stress. We prove the global existence and uniqueness of the solution for the associated initial-boundary value problem in a two-dimensional bounded domain. We study the longtime behavior of the solution and show that it converges to the uniform composition distribution with zero velocity field. We also present numerical simulations of miscible drops and show how transient interfacial phenomena can change their shape.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

D.M.Anderson , G.B.McFadden and A.A.Wheeler , Diffuse interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30 (1998) 139-165.

L.K.Antanovskii , Microscale theory of surface tension. Phys. Rev. E 54 (1996) 6285-6290.

J.W.Cahn and J.E.Hilliard , Free energy of a nonuniform system. I. Interfacial Free Energy. J. Chem. Phys. 28 (1958) 258-267.

J.S.Rowlinson , Translation of J.D. van der Waals' ``The thermodynamic theory of capillarity under hypothesis of a continuous variation of density''. J. Statist. Phys. 20 (1979) 197.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

ESAIM: Mathematical Modelling and Numerical Analysis
  • ISSN: 0764-583X
  • EISSN: 1290-3841
  • URL: /core/journals/esaim-mathematical-modelling-and-numerical-analysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: