Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T23:20:38.198Z Has data issue: false hasContentIssue false

Constraining GRB as Source for UHE Cosmic Rays through Neutrino Observations

Published online by Cambridge University Press:  22 July 2013

P. Chen*
Affiliation:
Department of Physics and Leung Center for Cosmology and Particle Astrophysics (LeCosPA), National Taiwan University, Taipei, 10617 Taiwan;. e-mail: pisinchen@phys.ntu.edu.tw Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
Get access

Abstract

The origin of ultra-high energy cosmic rays (UHECR) has been widely regarded as one of the major questions in the frontiers of particle astrophysics. Gamma ray bursts (GRB), the most violent explosions in the universe second only to the Big Bang, have been a popular candidate site for UHECR productions. The recent IceCube report on the non-observation of GRB induced neutrinos therefore attracts wide attention. This dilemma requires a resolution: either the assumption of GRB as UHECR accelerator is to be abandoned or the expected GRB induced neutrino yield was wrong. It has been pointed out that IceCube has overestimated the neutrino flux at GRB site by a factor of ~5. In this paper we point out that, in addition to the issue of neutrino production at source, the neutrino oscillation and the possible neutrino decay during their flight from GRB to Earth should further reduce the detectability of IceCube, which is most sensitive to the muon-neutrino flavor as far as point-source identification is concerned. Specifically, neutrino oscillation will reduce the muon-neutrino flavor ratio from 2/3 per neutrino at GRB source to 1/3 on Earth, while neutrino decay, if exists and under the assumption of normal hierarchy of mass eigenstates, would result in a further reduction of muon-neutrino ratio to 1/8. With these in mind, we note that there have been efforts in recent years in pursuing other type of neutrino telescopes based on Askaryan effect, which can in principle observe and distinguish all three flavors with comparable sensitivities. Such new approach may therefore be complementary to IceCube in shedding more lights on this cosmic accelerator question.

Type
Research Article
Copyright
© EAS, EDP Sciences 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasi, R., Abu-Zayyad, T., Al-Seady, M., et al. [High Resolution Fly’s Eye Collaboration], 2009, Astroparticle Phys., 32, 53 CrossRef
Abbasi, R., Abdou, Y., Abu-Zayyad, T., et al. [IceCube Collaboration], 2011, Phys. Rev. Lett., 106, 141101 CrossRef
Abraham, J., Abreu, P., Aglietta, M., et al. [Pierre Auger Collaboration], 2010, Phys. Lett. B, 685, 239 CrossRef
Ahlers, M., Gonzalez-Garcia, M.C., & Halzen, F., 2011, Astroparticle Phys., 35, 87 CrossRef
Allison, P., Auffenberg, J., Bard, R., et al. [ARA Collaboration], 2012, Astroparticle Phys., 35, 457 CrossRef
Askaryan, G.A., 1962, JETP, 14, 441
Askaryan, G.A., 1965, JETP, 21, 658
Barwick, S.W., 2007, J. Phys.: Conf. Ser., 60, 276
Beacom, J.F., Bell, N.F., Hooper, D., et al., 2003, Phys. Rev. Lett., 90, 181301 CrossRef
Berezinsky, V., & Zatsepin, G., 1969, Phys. Lett. B, 28, 423
Chen, P., & Hoffman, K.D., 2009, “Origin and Evolution of Cosmic Accelerators – The Unique Discovery Potential of a Neutrino Telescope: Astronomy Decadal Survey (2010-2020) Science White Paper [arXiv:0902.3288]
Chen, C.-C., Chen, P., Hu, C.-Y., et al., 2013, Mod. Phys. Lett. A, 28, 1340009 CrossRef
Fukuda, Y., Hayakawa, T., Ichihara, E., et al. [Super-Kamiokande Collaboration], 1998, Phys. Rev. Lett., 81, 1158 CrossRef
Gerhardt, L., Klein, S., Stezelberger, T., et al. [ARIANNA Collaboration], 2010, Nucl. Instr. Meth. Phys. Res. A, 624, 85 CrossRef
Gorham, P., Allison, P., Barwick, S., et al. [ANITA Collaboration], 2009, Phys. Rev. Lett., 103, 051103 CrossRef
Gorham, P.W., Allison, P., Bauhman, B.M., et al. [ANITA Collaboration], 2010, Phys. Rev. D, 82, 022004 CrossRef
Gorham, P.W., Hebert, C.L., Liewer, K.M., et al. [GLUE Collaboration], 2004, Phys. Rev. Lett., 93, 041101 CrossRef
Greisen, K., 1966, Phys. Rev. Lett., 16, 748 CrossRef
Guetta, D., Hoper, D., Alvarez-Muniz, J., et al., 2004, Astroparticle Phys., 20, 429 CrossRef
Hoover, S., Nam, J., Gorham, P.W., et al. [ANITA Collaboration], 2010, Phys. Rev. Lett., 105, 151101 CrossRef
James, C.W., Ekers, R.D., Alvarez-Muniz, J., et al. [LUNASKA Collaboration], 2010, Phys. Rev. D, 81, 042003 CrossRef
Karle, A., Ahrens, J., Bahcall, J.N., et al. [IceCube Collaboration], 2003, Nucl. Phys. B - Proc. Suppl., 118, 388 CrossRef
Kravchenko, I., Cooley, C., Hussain, S., et al. [RICE Collaboration], 2006, Phys. Rev. D, 73, 082002 CrossRef
Li, Z., 2012, Phys. Rev. D, 85, 027301 CrossRef
Maltoni, M., & Winter, W., 008, JCAP 0807.064
Saltzberg, D., Gorham, P., Walz, D., et al., 2001, Phys. Rev. Lett., 86, 2802 CrossRef
Turner, M., ed. “Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century”, 2003 (US National Research Council Publication)
Wang, S.-H., Chen, P., Huang, M.-L., et al., “Feasibility of Determining Diffuse Ultra-High Energy Cosmic Neutrino Flavor Ratio through ARA Neutrino Observatory”, 2013 [arXiv:1302.1586] [astro-ph.HE], submitted to JCAP
Waxman, E., & Bahcall, J., 1997, Phys. Rev. Lett., 78, 2292 CrossRef
Zatsepin, G., & Kuzmin, V., 1966, JETP Lett., 4, 114