Skip to main content Accessibility help

On steady states of van der Waals force driven thin film equations

  • HUIQIANG JIANG (a1) and WEI-MING NI (a2)


Let , N ≥2 be a bounded smooth domain and α > 1. We are interested in the singular elliptic equation with Neumann boundary conditions. In this paper, a complete description of all continuous radially symmetric solutions is given. In particular, we construct nontrivial smooth solutions as well as rupture solutions. Here a continuous solution is said to be a rupture solution if its zero set is nonempty. When N = 2 and α = 3, the equation is used to model steady states of van der Waals force driven thin films of viscous fluids. We also consider the physical problem when total volume of the fluid is prescribed.



Hide All
[1]Almgren, R., Bertozzi, A. & Brenner, M. P. (1996) Stable and unstable singularities in the unforced Hele-Shaw cell. Phys. Fluids 8 (6), 13561370.
[2]Barenblatt, G. I., Beretta, E. & Bertsch, M. (1997) The problem of the spreading of a liquid film along a solid surface: a new mathematical formulation. Proc. Natl. Acad. Sci. U.S.A. 94 (19), 1002410030.
[3]Beretta, E. (1997) Selfsimilar source solutions of a fourth order degenerate parabolic equation. Nonlinear Anal. 29 (7), 741760.
[4]Bernoff, A. J. & Bertozzi, A. L. (1995) Singularities in a modified Kuramoto-Sivashinsky equation describing interface motion for phase transition. Physica D 85 (3), 375404.
[5]Bertozzi, A. L., Grün, G. & Witelski, T. P. (2001) Dewetting films: bifurcations and concentrations. Nonlinearity 14 (6), 15691592.
[6]Bertozzi, A. L. & Pugh, M. (1996) The lubrication approximation for thin viscous films: regularity and long-time behavior of weak solutions. Commun. Pure Appl. Math. 49 (2), 85123.
[7]Bertozzi, A. L. & Pugh, M. C. (2000) Finite-time blow-up of solutions of some long-wave unstable thin film equations. Indiana Univ. Math. J. 49 (4), 13231366.
[8]Bertozzi, A. L. (1998) The mathematics of moving contact lines in thin liquid films. Notices Am. Math. Soc. 45 (6), 689697.
[9]Bertozzi, A. L., Brenner, M. P., Dupont, T. F. & Kadanoff, L. P. (1994) Singularities and similarities in interface flows. In: Trends and Perspectives in Applied Mathematics. Appl. Math. Sci. 100, 155–208. Springer, New York.
[10]Bertsch, M., Dal Passo, R., Garcke, H. & Grün, G. (1998) The thin viscous flow equation in higher space dimensions. Adv. Differential Equations 3 (3), 417440.
[11]Constantin, P., Dupont, T. F., Goldstein, R. E., Kadanoff, L. P., Shelley, M. J. & Zhou, S.-M. (1993) Droplet breakup in a model of the Hele-Shaw cell. Phys. Rev. E (3), 47 (6), 41694181.
[12]Dal, Passo, R., Garcke, H. & Grün, G. (1998) On a fourth-order degenerate parabolic equation: global entropy estimates, existence, and qualitative behavior of solutions. SIAM J. Math. Anal. 29 (2), 321342 (electronic).
del Pino, M. A. & Hernandez, G. E. (1996) Solvability of the Neumann problem in a ball for −Δ u + u−v = h(|x|), v>1. J. Differential Equations 124 (1), 108131.
[13]Dupont, T. F., Goldstein, R. E., Kadanoff, L. P. & Zhou, S.-M. (1993) Finite-time singularity formation in Hele-Shaw systems. Phys. Rev. E (3) 47 (6), 41824196.
[14]Ehrhard, P. (1994) The spreading of hanging drops. J. Colloid Interface 168 (1), 242246.
[15]Grün, G. (2004) Droplet spreading under weak slippage—existence for the Cauchy problem. Commun. Partial Differential Equations 29 (11–12), 16971744.
[16]Hartman, P. (1964) Ordinary Differential Equations, Wiley, New York.
[17]Jiang, H. & Lin, F. (2004) Zero set of Sobolev functions with negative power of integrability. Chin. Ann. Math. Ser. B 25 (1), 6572.
[18]Laugesen, R. S. & Pugh, M. C. (2000) Linear stability of steady states for thin film and Cahn-Hilliard type equations. Arch. Ration. Mech. Anal. 154 (1), 351.
[19]Laugesen, R. S. & Pugh, M. C. (2000) Properties of steady states for thin film equations. Eur. J. Appl. Math. 11 (3), 293351.
[20]Laugesen, R. S. & Pugh, M. C. (2002) Energy levels of steady states for thin-film-type equations. J. Differential Equations 182 (2), 377415.
[21]Laugesen, R. S. & Pugh, M. C. (2002) Heteroclinic orbits, mobility parameters and stability for thin film type equations. Electron. J. Differential Equations 95, 29 pp. (electronic).
[22]Myers, T. G. (1998) Thin films with high surface tension. SIAM Rev. 40 (3), 441462 (electronic).
[23]Oron, A., Davis, S. H. & Bankoff, S. G. (1997) Nonlinear theory of film rupture. Rev. Mod. Phys. 69 (3), 931980.
[24]Shelley, M. J., Goldstein, R. E. & Pesci, A. I. (1993) Topological transitions in Hele-Shaw flow. In: Singularities in Fluids, Plasmas and Optics (Heraklion, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 404, 167–188. Kluwer Acad. Publ., Dordrecht.
[25]Slepčev, D. & Pugh, M. C. (2005) Selfsimilar blowup of unstable thin-film equations. Indiana Univ. Math. J. 54 (6), 16971738.
[26]Williams, M. B. & Davis, S. H. (1982) Nonlinear theory of film rupture. J. Colloid Interface. Sci. 90 (1), 220228.
[27]Witelski, T. P. & Bernoff, A. J. (1999) Stability of self-similar solutions for van der {W}aals driven thin film rupture. Phys. Fluids 11 (9), 24432445.
[28]Witelski, T. P. & Bernoff, A. J. (2000) Dynamics of three-dimensional thin film rupture. Physica. D 147 (1–2), 155176.
[29]Zhang, W. W. & Lister, J. R. (1999) Similarity solutions for van der {W}aals rupture of a thin film on a solid substrate. Phys. Fluids 11 (9), 24542462.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

European Journal of Applied Mathematics
  • ISSN: 0956-7925
  • EISSN: 1469-4425
  • URL: /core/journals/european-journal-of-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed