Skip to main content
×
×
Home

HIGH SOIL CALCIUM SATURATION LIMITS USE OF LEAF POTASSIUM DIAGNOSIS WHEN KCL IS APPLIED IN OIL PALM PLANTATIONS

  • BERNARD DUBOS (a1), VICTOR BARON (a1), XAVIER BONNEAU (a1), ALBERT FLORI (a1) and JEAN OLLIVIER (a1)...
Summary

Potassium chloride (KCl) is the most widely used fertilizer in oil palm (Elaeis guineensis) plantations and the rates applied are based on interpretation of leaf K contents. When no positive response on leaf K contents can be detected, no optimum content can be established whatever the yield response to KCl rates. We used data from 13 fertilization trials conducted on several continents to study the responses of leaf K, leaf Cl, leaf Ca and yield to KCl rates as a function of the soil properties of each site. We found that the abundance of exchangeable Ca in the soil expressed as a percent of the cation exchange capacity (CEC) was the best soil variable to predict if leaf K content would increase with KCl rates. In addition, we found that the leaf K contents of unfertilized controls at the end of the trials were also correlated with Ca/CEC. This ratio thus appears to be a better index of soil K reserves than soil exchangeable K content.

Copyright
Corresponding author
Corresponding author. Email: bernard.dubos@cirad.fr
References
Hide All
Breure, C. J. and Rosenquist, E. A. (1977). An oil palm fertilizer experiment on volcanic soils in Papua New Guinea. Oléagineux 32 (7):301316.
Caliman, J.-P., Daniel, C. and Tailliez, B. (1994). Oil palm mineral nutrition. Plantations, Recherche, Développement 1 (3):3654.
Chapman, G. W. and Gray, H. M. (1949). Leaf analysis and the nutrition of oil palm. Annals of Botany 13 (52):415433.
Dubos, B., Alarcón, W. H., Chaves, G. and Rubio, J. D. (2013). El diagnóstico de la nutrición potásica: La experiencia de Indupalma Ltda. Palmas 34 (3):2127.
Dubos, B., Alarcón, W. H., López, J. E. and Ollivier, J. (2011). Potassium uptake and storage in oil palm organs: The role of chlorine and the influence of soil characteristics in the Magdalena valley, Colombia. Nutrient Cycling in Agroecosystems 89 (2):219227. https://doi.org/10.1007/s10705-010-9389-x.
Dubos, B., Snoeck, D. and Flori, A. (2017). Excessive use of fertilizer can increase leaching processes and modify soil reserves in two ecuadorian oil palm plantations. Experimental Agriculture 53 (02):255268. https://doi.org/10.1017/S0014479716000363.
Fallavier, P. and Olivin, J. (1988). Etude expérimentale de la dynamique du potassium et du magnésium dans quelques sols tropicaux représentatifs de la zone de culture du palmier à huile. Oléagineux 43 (3):93101.
Foster, H. L. (2003). Assessment of oil palm fertilizer requirements. In Oil Palm: Management for Large and Sustainable Yields, 191230 (Eds Fairhurst, T. and Hardter, R.). Singapore: Potash & Phosphate Institute/Potash & Phosphate Institute of Canada and International Potash Institute.
Foster, H. L. and Prabowo, N. E. (1996). Variation in potassium fertilizer requirements in oil palm in North Sumatra. Presented at the 1996 PORIM International Palm Oil Congress: Competitiveness for the 21st Century, Kuala Lumpur, Malaysia: PORIM.
Goh, K. J. and Hardter, R. (2003). General oil palm nutrition. In Oil Palm: Management for Large and Sustainable Yields, 191230 (Eds Fairhurst, T. and Hardter, R.). Singapore: Potash & Phosphate Institute/Potash & Phosphate Institute of Canada and International Potash Institute.
Guiking, F. C. T. (1984). Problems in the uptake of potash by oil palm (Elaeis Guineensis) in Papua New Guinea–. Presented at the International Conference on Soils and Nutrition of Perennial Crops, Kuala Lumpur, Malaysia: Malaysian Society of Soil Science. 435–443.
Kee, K. K., Goh, K. J. and Chew, P. S. (1995). Effects of NK fertilizer on soil pH and exchangeable K status on acid soils in an oil palm plantation in Malaysia. In Plant-Soil Interactions at Low pH: Principles and Management, 809–815 (Eds Date, R. A., Grundon, N. J., Rayment, G. E. and Probert, M. E.). Dordrecht, the Netherlands: Springer. Retrieved from http://link.springer.com/10.1007/978-94-011-0221-6_130.
Nelson, P. N., Webb, M. J., Banabas, M., Nake, S., Goodrick, I., Gordon, J., O'Grady, , , D. and Dubos, B. (2014). Methods to account for tree-scale variability in soil- and plant-related parameters in oil palm plantations. Plant and Soil 374 (1–2):459471. https://doi.org/10.1007/s11104-013-1894-7.
Ng, H. C. P., Chew, P. S., Goh, K. J. and Kee, K. K. (1999). Nutrient requirements and sustainability in mature oil palms–an assessment. The Planter 75 (880):331345.
Ng, S. K., Thamboo, S. and De Souza, P. (1968). Nutrient contents of oil palm in Malaysia - II Nutrients in vegetative tissues. The Malaysian Agricultural Journal 46 (3):332391.
Ollagnier, M. and Ochs, R. (1981). Management of mineral nutrition on industrial oil palm plantations. Fertilizer savings. Oléagineux 36 (8–9):409421.
Prevot, P. and Ollagnier, M. (1956). Utilisation du Diagnostic Foliaire. Oléagineux 11 (11):695703.
Rival, A. and Levang, P. (2015). The oil palm (Elaeis guineensis): Research challenges beyond controversies. Palms 59 (1):3349.
SAS Institute. (2011). SAS/STAT 9.3. User's Guide. Cary NC, USA: SAS Institute.
Teoh, K. C. and Chew, P. S. (1987). Use of Rachis analysis as an indicator of K nutrient status in oil palm. In (Eds Hassan, H. A., Chew, P. S., Wood, B. J. and Pushparajah, E.). Presented at the 1987 International Oil Palm/Palm Oil Conferences: Progress and Prospects, Kuala Lumpur Malaysia: MPOB. 262271.
Tung, P. G. A., Mohd, K. Y., Majid, N. M., Goh, K. J. and Huang, G. H. (2009). Effect of N and K fertilizers on nutrient leaching and groundwater quality under mature oil palm in sabah during the monsoon period. American Journal of Applied Sciences 6 (10):17881799. https://doi.org/10.3844/ajassp.2009.1788.1799.
Wilkie, A. S. and Foster, H. L. (1989). Oil palm response to fertilizer in Papua New Guinea. Presented at the 1989 PORIM International Palm Oil Development Conference, Kuala Lumpur, Malaysia: MPOB. 395405.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Experimental Agriculture
  • ISSN: 0014-4797
  • EISSN: 1469-4441
  • URL: /core/journals/experimental-agriculture
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
Type Description Title
WORD
Supplementary materials

Dubos et al supplementary material 1
Supplementary Table

 Word (19 KB)
19 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed