Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T20:55:26.844Z Has data issue: false hasContentIssue false

Silicon dioxide nanofertilizers improve photosynthetic capacity of two Criollo cocoa clones (Theobroma cacao L.)

Published online by Cambridge University Press:  17 May 2021

Pedro Gómez-Vera
Affiliation:
Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas1041-A, Venezuela
Héctor Blanco-Flores
Affiliation:
Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas1041-A, Venezuela
Ana Marta Francisco
Affiliation:
Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Apartado 21827, Caracas1020-A, Venezuela
Jimmy Castillo
Affiliation:
Centro de Físico-Química, Escuela de Química, Universidad Central de Venezuela, Apartado 47114, Caracas1041-A, Venezuela
Wilmer Tezara*
Affiliation:
Centro de Botánica Tropical, Instituto de Biología Experimental, Universidad Central de Venezuela, Apartado 47114, Caracas1041-A, Venezuela Facultad de Ciencias Agropecuarias, Universidad Técnica Luis Vargas Torres, Estación Experimental Mutile, Esmeraldas, Ecuador
*
*Corresponding author. Email: wilmer.tezara@ciens.ucv.ve

Summary

Studies on the effect of nanofertilizers (NF) in physiological performance of plants is scarce, especially that related to substances encapsulated into silicon dioxide (SiO2) nanoparticles in cocoa plants. The effect of foliar application of SiO2-NF on nutrient contents, gas exchange, photochemical activity, photosynthetic pigments, total soluble protein (TSP), photosynthetic nitrogen use efficiency (PNUE), and growth in seedlings of two cocoa clones (OC-61 and BR-05) in a greenhouse was assessed. Spraying with SiO2-NF increased net photosynthetic rate (A) by 16 and 60% and electron transport rate (J) by 52 and 162% in clones OC-61 and BR-05, respectively, without changes in photosynthetic pigment concentration in either clone. The SiO2-NF caused a decrease of 37 and 22% in stomatal conductance in OC-61 and BR-05, respectively; a similar trend was observed in transpiration rate, causing an increase of 42 and 100% in water use efficiency in OC-61 and BR-05, respectively. In both clones, diameter of graft increased on average 28% with SiO2-NF. Higher photosynthetic capacity was related to an increase in leaf N, P, and TSP. A significant reduction in PNUE (A/N ratio) was found in OC-61, whereas in BR-05 PNUE increased after spraying with SiO2-NF. Overall, spraying with SiO2-NF had a positive effect on photosynthetic processes in both cocoa clones, associated with an increase in nutrients content, which translated into improved growth. A differential physiological response to spraying with SiO2-NF between clones was also found, with BR-05 being the clone with a better physiological response during the establishment and development stages.

Type
Research Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, M., Qadeer, U., Ahmed, Z.I. and Hassan, F. (2016). Improvement of wheat (Triticum aestivum) drought tolerance by seed priming with silicon. Archives of Agronomy and Soil Science 62, 299315.CrossRefGoogle Scholar
Aikpokpodion, P.E. (2010). Nutrients dynamics in cocoa soils, leaf and beans in Ondo State, Nigeria. Journal of Agricultural Science 1, 19.Google Scholar
Ávila-Lovera, E., Blanco, H., Móvil, O., Santiago, L.S. and Tezara, W. (2021). Shade tree species affect gas exchange and hydraulic conductivity of cacao cultivars in an agroforestry system Tree Physiology 41, 240253.CrossRefGoogle Scholar
Ávila-Lovera, E., Coronel, I., Jaimez, R., Urich, R., Pereyra, G., Araque, O., Chacón, I. and Tezara, W. (2016). Ecophysiological traits of adult trees of Criollo cocoa cultivars (Theobroma Cacao L.) from a germplasm bank in Venezuela. Experimental Agriculture 52, 137153.CrossRefGoogle Scholar
Bertolde, F.Z., Almeida, A.F., Pirovani, C.V., Gomes, F.P., Ahnert, D., Baligar, V.C. and Valle, R.R. (2012). Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. Photosynthetica 50, 447457.CrossRefGoogle Scholar
Bradford, M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.CrossRefGoogle Scholar
Chen, W., Yao, X., Cai, K. and Chen, J. (2011). Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research 142, 6776.CrossRefGoogle ScholarPubMed
Daymond, A., Tricker, P.J. and Hadley, P. (2011). Genotypic variation in photosynthesis in cacao is correlated with stomatal conductance and leaf nitrogen. Biologia Plantarum 55,99104.CrossRefGoogle Scholar
De Almeida, J., Herrera, A. and Tezara, W. (2018). Phenotypic plasticity to photon flux density of physiological, anatomical and growth traits in a modern Criollo cocoa clone. Physiologia Plantarum 166, 821832.CrossRefGoogle Scholar
De Almeida, J., Tezara, W. and Herrera, A. (2016). Physiological responses to drought and experimental water deficit and waterlogging of four clones of cocoa (Theobroma cacao L.) selected for cultivation in Venezuela. Agricultural Water Management 171, 8088.CrossRefGoogle Scholar
Elsheery, N., Sunoj, V.S.J., Wen, Y., Zhu, J.J., Muralidharan, G. and Cao, K.F. (2020). Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiology and Biochemistry 149, 5060.CrossRefGoogle ScholarPubMed
Fernández, V., Sotiropoulos, T. and Brown, P.H. (2015). Fertilización foliar: principios científicos y práctica de campo. Melgar, R. and Fernández, V. (eds), Francia: Asociación Internacional de la Industria de Fertilizantes IFA, pp. 1331.Google Scholar
Gattward, J.N., Almeida, A.–A.F., Souza, J.O., Gomes, F.P. and Kronzucker, H.J. (2012). Sodium-potassium synergism in Theobroma cacao: stimulation of photosynthesis, water-use efficiency and mineral nutrition. Physiologia Plantarum 146, 350362.CrossRefGoogle ScholarPubMed
Genty, B., Briantais, J.M. and Baker, N.R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990, 8792.CrossRefGoogle Scholar
Haghighi, M. and Pessarakli, M. (2013). Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae 161, 111117.CrossRefGoogle Scholar
Hernández, C.E., Leiva, R. and Ramírez, R. (2017). Dinámica estomática en cacao (Theobroma cacao L.). International Symposium on Cocoa Research, 1–6. Perú: ICCO.Google Scholar
International Cocoa Organization ICCO. (2020). Quarterly Bulletin of Cocoa Statistics, year 2019/2020. Available at https://www.icco.org/statistics/other-statistical-data.html.Google Scholar
Jackson, M.L. (1958). Soil chemical analysis. Englewood NJ: Verlag: Prentice Hall, Inc., (eds), 183.Google Scholar
Latsague, M., Sáez, P. and Mora, M. (2014). Efecto de la fertilización con nitrógeno, fósforo y potasio, sobre el contenido foliar de carbohidratos, proteínas y pigmentos fotosintéticos en plantas de Berberidopsis corallina Hook.f. Gayana Botánica 71, 3742.CrossRefGoogle Scholar
Li, P., Song, A., Li, Z.J., Fan, F.L. and Liang, Y.C. (2015). Silicon ameliorates manganese toxicity by regulating both physiological processes and expression of genes associated with photosynthesis in rice (Oryza sativa L.). Plant Soil 397, 289301.CrossRefGoogle Scholar
Matichenkov, V.V., Bocharnikova, E.A., Kosobryukhov, A.A. and Biel, K.Y. (2008). Mobile forms of silicon in plants. Doklady Biological Sciences 418, 3940.CrossRefGoogle ScholarPubMed
Maxwell, K. and Johnson, G. (2000). Chlorophyll fluorescence a practical guide. Journal of Experimental Botany 51, 659668.CrossRefGoogle ScholarPubMed
Monreal, C.M., DeRosa, M., Mallubhotla, S.C., Bindraban, P.S. and Dimkpa, C. (2015). Nanotechnologies for Increasing the Crop Use Efficiency of Fertilizer-Micronutrients. Biology and Fertility of Soils 52, 423437.CrossRefGoogle Scholar
Morales-Díaz, A.B., Ortega-Ortíz, H., Juárez-Maldonado, A., Cadenas-Pliego, G., González-Morales, S. and Benavides-Mendoza, A. (2017). Application of nanoelements in plant nutrition and its impact in ecosystems. Advances in Natural Sciences: Nanoscience and Nanotechnology 8, 113.Google Scholar
Motamayor, J.C., Lachenaud, P., Wallace, J., Loor, R., Kuhn, D., Steven, J. and Schnell, R. (2008). Geographic and Genetic Population Differentiation of the Amazonian Chocolate Tree (Theobroma cacao L.). PLoS One 3, 18.CrossRefGoogle Scholar
Motamayor, J.C., Risterucci, A.M., Lopez, P.A., Ortiz, C.F., Moreno, A. and Lanaud, C. (2002). Cacao domestication I: the origin of the cacao cultivated by the Mayas. Heredity 89, 380386.CrossRefGoogle ScholarPubMed
Murphy, J. and Riley, J.P. (1962). A modified single method for the determination of phosphate in natural waters. Analytica Chimica Acta 27, 3136.CrossRefGoogle Scholar
Puentes-Páramo, Y.J., Menjivar-Flores, J.C. and Aranzazu-Hernández, F. (2016). Concentración de nutrientes en hojas, una herramienta para el diagnóstico nutricional en Cacao. Agronomía Mesoamericana 27, 329336.CrossRefGoogle Scholar
Quiñones-Gálvez, Q., Sosa, D., Demey, J.R., Aleman, S., Sosa, M., Parra, D., Móvil, O., Trujillo, R., Capdesuñer, Y., Quirós, Y., Hernández, M. and Infante, D. (2015). Caracterización bioquímica de hojas de clones de Theobroma cacao y su relación con los tricomas. Revista Colombiana de Biotecnología 17, 3343.CrossRefGoogle Scholar
Raliya, R., Saharan, V., Dimkpa, C. and Biswas, P. (2017). Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. Journal of Agricultural and Food Chemistry 66, 64876503.CrossRefGoogle ScholarPubMed
Ram, P., Kumar, R., Rawat, A., Pandey, P. and Singh, V.P. (2018). Nanomaterials for efficient plant nutrition. International Journal of Chemistry 6, 867871.Google Scholar
Rico, C.M., Hong, J., Morales, M.I., Zhao, L.J., Barrios, A.C., Zhang, J.Y., Peralta-Videa, J.R. and Gardea-Torresdey, J.R. (2013). Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defence system and in vivo fluorescence imaging. Environmental Science & Technology 47, 56355642.CrossRefGoogle Scholar
Saud, S., Li, X., Chen, Y., Zhang, L., Fahad, S., Hussain, S., Sadiq, A. and Chen, Y. (2014). Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morphophysiological functions. The Scientific World Journal 2014, 110.CrossRefGoogle ScholarPubMed
Schönherr, J. (2006). Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. Journal of Experimental Botany 57, 24712491.CrossRefGoogle ScholarPubMed
Schreiber, L. (2005). Polar paths of diffusion across plant cuticles: new evidence for an old hypothesis. Annals of Botany 95, 10691073.CrossRefGoogle ScholarPubMed
Schreiber, L. and Schönherr, J. (2009). Water and solute permeability of plant cuticles: Measurement and data analysis. Germany: Springer Verlag, pp. 128.Google Scholar
Song, A., Li, P., Fan, F.L., Li, Z.J. and Liang, Y.C. (2014). The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high zinc stress. PLoS One 9, 121.CrossRefGoogle ScholarPubMed
Spreitzer, R.J. and Salvucci, M.E. (2002). RuBisCO: structure, regulatory interactions, and possibilities for a better enzyme. Annual Review of Plant Biology 53, 449475.CrossRefGoogle ScholarPubMed
Sun, D., Hussain, H.I., Yi, Z., Rookes, J.E., Kong, L., Cahill, D.M. (2016). Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152, 8191.CrossRefGoogle ScholarPubMed
Tezara, W., Pereyra, G., Ávila-Lovera, E. and Herrera, A. (2020). Variability in physiological responses of Venezuelan cacao to drought. Experimental Agriculture 56, 407421.CrossRefGoogle Scholar
Tezara, W., Urich, R., Jaimez, R., Coronel, I., Araque, O., Azocar, C. and Chacón, I. (2016). Does Criollo cocoa have the same ecophysiological characteristics as Forastero? Botanical Sciences 94, 563574.CrossRefGoogle Scholar
Trenholm, L. E., Datnoff, L. E. and Nagata, R. T. (2004). Influence of silicon on drought and shade tolerance of St. Augustinegrass. HortTechnology 14, 487490.CrossRefGoogle Scholar
Wang, A., Jin, Q., Xu, X., Miao, A.-J., White, J.C., Gardea-Torresdey, J.L., Ji, R. and Zhao, L. (2020). High-Throughput screening for engineered nanoparticles that enhance photosynthesis using mesophyll protoplasts. Journal of Agricultural and Food Chemistry 68, 33823389.CrossRefGoogle ScholarPubMed
Wellburn, A. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144, 307313.CrossRefGoogle Scholar
Wu, Z.Y., Wang, H.J., Zhuang, T.T., Sun, L.B., Wang, Y.M. and Zhu, J.H. (2008). Multiple functionalization of mesoporous silica in one-pot: direct synthesis of aluminum-containing plugged SBA-15 from aqueous nitrate solutions. Advanced Functional Materials 18, 8294.CrossRefGoogle Scholar
Zanetti, L.V., Milanez, C.R.D., Gama, V.N., Aguilar, M.A.G., Souza, C.A.S., Campostrini, E., Ferraz, T.M. and Figueiredo, F.A.M.M.A. (2016). Leaf application of silicon in young cacao plants subjected to water deficit. Pesquisa Agropecuária Brasileira 51, 215223.CrossRefGoogle Scholar
Zarafshar, M., Akbarinia, M., Askari, H., Hosseini, S.H., Rahaie, M. and Struve, D. (2015). Toxicity assessment of SiO2 nanoparticles to pear seedlings. International Journal of Nanoscience and Nanotechnology 11, 1322.Google Scholar
Zhu, Y. and Gong, H. (2014). Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development 34, 455472.CrossRefGoogle Scholar