Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T11:32:04.168Z Has data issue: false hasContentIssue false

RECENT DEVELOPMENTS IN THERAPIES WITH STEM CELLS FROM AMNIOTIC FLUID AND PLACENTA

Published online by Cambridge University Press:  06 December 2013

STAVROS P. LOUKOGEORGAKIS
Affiliation:
Paediatric Surgery Unit, UCL Institute of Child Health, London, UK.
PANAGIOTIS MAGHSOUDLOU
Affiliation:
Paediatric Surgery Unit, UCL Institute of Child Health, London, UK.
PAOLO DE COPPI*
Affiliation:
Paediatric Surgery Unit, UCL Institute of Child Health, London, UK.
*
Paolo De Coppi, MD, PhD, Paediatric Surgery Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, 30 Guilford Street, London WC1N 1EH, UK. Email: p.decoppi@ucl.ac.uk

Extract

Significant advances in the field of regenerative medicine have intensified the search for novel sources of stem cells with potential for therapy. Although embryonic and adult tissues can be used for the isolation of pluripotent stem cells, significant limitations including ethical concerns, complexity of isolation/culture and tumorigenicity have hindered translation of laboratory findings to clinical practice.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1De Coppi, P, Bartsch, G Jr, Siddiqui, MM, Xu, T, Santos, CC, Perin, L, et al.Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007 Jan; 25(1): 100–6.Google Scholar
2Murphy, S, Rosli, S, Acharya, R, Mathias, L, Lim, R, Wallace, E, et al.Amnion epithelial cell isolation and characterization for clinical use. Curr Protoc Stem Cell Biol 2010 Apr; Chapter 1: Unit 1E.6.Google Scholar
3Murphy, SV, Atala, A. Amniotic fluid and placental membranes: unexpected sources of highly multipotent cells. Semin Reprod Med 2013 Jan; 31(1): 62–8.CrossRefGoogle ScholarPubMed
4In ‘t Anker, PS, Scherjon, SA, Kleijburg-van der Keur, C, de Groot-Swings, GM, Claas, FH, Fibbe, WE, et al.Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 2004 22(7): 1338–45.CrossRefGoogle ScholarPubMed
5Shaw, SW, David, AL, De Coppi, P. Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr Opin Obstet Gynecol 2011 Apr; 23(2): 109–16.CrossRefGoogle ScholarPubMed
6Calvin, SE, Oyen, ML. Microstructure and mechanics of the chorioamnion membrane with an emphasis on fracture properties. Ann N Y Acad Sci 2007 Apr; 1101: 166–85.Google Scholar
7Lotgering, FK, Wallenburg, HC. Mechanisms of production and clearance of amniotic fluid. Semin Perinatol 1986 Apr; 10(2): 94102.Google Scholar
8Cananzi, M, Atala, A, De Coppi, P. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod Biomed Online 2009 18(Suppl 1): 1727.Google Scholar
9Gosden, C, Brock, DJ. Combined use of alphafetoprotein and amniotic fluid cell morphology in early prenatal diagnosis of fetal abnormalities. J Med Genet 1978 Aug; 15(4): 262–70.Google Scholar
10Hoehn, H, Bryant, EM, Karp, LE, Martin, GM. Cultivated cells from diagnostic amniocentesis in second trimester pregnancies. II. Cytogenetic parameters as functions of clonal type and preparative technique. Clin Genet 1975 Jan; 7(1): 2936.CrossRefGoogle ScholarPubMed
11Streubel, B, Martucci-Ivessa, G, Fleck, T, Bittner, RE. In vitro transformation of amniotic cells to muscle cells: background and outlook. Wien Med Wochenschr 1996 146(910): 216–7.Google Scholar
12In ‘t Anker, PS, Scherjon, SA, Kleijburg-van der Keur, C, Noort, WA, Claas, FH, Willemze, R, et al.Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003 Aug 15; 102(4): 1548–9.Google Scholar
13Brivanlou, AH, Gage, FH, Jaenisch, R, Jessell, T, Melton, D, Rossant, J. Stem cells: setting standards for human embryonic stem cells. Science 2003 May 9; 300(5621): 913–6.Google Scholar
14De Coppi, P, Callegari, A, Chiavegato, A, Gasparotto, L, Piccoli, M, Taiani, J, et al.Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J Urol 2007 Jan; 177(1): 369–76.Google Scholar
15Parolini, O, Soncini, M, Evangelista, M, Schmidt, D. Amniotic membrane and amniotic fluid-derived cells: potential tools for regenerative medicine? Regen Med 2009 Mar; 4(2): 275–91.CrossRefGoogle ScholarPubMed
16Moschidou, D, Mukherjee, S, Blundell, MP, Drews, K, Jones, GN, Abdulrazzak, H, et al.Valproic acid confers functional pluripotency to human amniotic fluid stem cells in a transgene-free approach. Mol Ther 2012 Oct; 20(10): 1953–67.Google Scholar
17Xu, RH, Chen, X, Li, DS, Li, R, Addicks, GC, Glennon, C, et al.BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 2002 Dec; 20(12): 1261–4.Google Scholar
18Drukker, M, Katz, G, Urbach, A, Schuldiner, M, Markel, G, Itskovitz-Eldor, J, et al.Characterization of the expression of MHC proteins in human embryonic stem cells. Proc Natl Acad Sci USA 2002 Jul 23; 99(15): 9864–9.Google Scholar
19Takahashi, K, Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 Aug 25; 126(4): 663–76.Google Scholar
20Covin, RB, Ambruso, DR, England, KM, Kelher, MR, Mehdizadehkashi, Z, Boshkov, LK, et al.Hypotension and acute pulmonary insufficiency following transfusion of autologous red blood cells during surgery: a case report and review of the literature. Transfus Med 2004 Oct; 14(5): 375–83.Google Scholar
21Chiavegato, A, Bollini, S, Pozzobon, M, Callegari, A, Gasparotto, L, Taiani, J, et al.Human amniotic fluid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J Mol Cell Cardiol 2007 Apr; 42(4): 746–59.Google Scholar
22Bollini, S, Cheung, KK, Riegler, J, Dong, X, Smart, N, Ghionzoli, M, et al.Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells Dev 2011 Nov; 20(11): 1985–94.Google Scholar
23Gnecchi, M, He, H, Noiseux, N, Liang, OD, Zhang, L, Morello, F, et al.Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006 Apr; 20(6): 661–9.Google Scholar
24Angelini, A, Castellani, C, Ravara, B, Franzin, C, Pozzobon, M, Tavano, R, et al.Stem-cell therapy in an experimental model of pulmonary hypertension and right heart failure: role of paracrine and neurohormonal milieu in the remodeling process. J Heart Lung Transplant 2011 Nov; 30(11): 1281–93.Google Scholar
25Carraro, G, Perin, L, Sedrakyan, S, Giuliani, S, Tiozzo, C, Lee, J, et al.Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 2008 Nov; 26(11): 2902–11.CrossRefGoogle ScholarPubMed
26Zani, A, Cananzi, M, Fascetti-Leon, F, Lauriti, G, Smith, VV, Bollini, S, et al.Amniotic fluid stem cells improve survival and enhance repair of damaged intestine in necrotising enterocolitis via a COX-2 dependent mechanism. Gut 2013 Mar 24. [Epub ahead of print]Google Scholar
27Perin, L, Giuliani, S, Jin, D, Sedrakyan, S, Carraro, G, Habibian, R, et al.Renal differentiation of amniotic fluid stem cells. Cell Prolif 2007 Dec; 40(6): 936–48.CrossRefGoogle ScholarPubMed
28Perin, L, Sedrakyan, S, Giuliani, S, Da, SS, Carraro, G, Shiri, L, et al.Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One 2010 5(2): e9357.Google Scholar
29Sedrakyan, S, Da, SS, Milanesi, A, Shiri, L, Petrosyan, A, Varimezova, R, et al.Injection of amniotic fluid stem cells delays progression of renal fibrosis. J Am Soc Nephrol 2012 Apr; 23(4): 661–73.CrossRefGoogle ScholarPubMed
30Prasongchean, W, Bagni, M, Calzarossa, C, De Coppi, P, Ferretti, P. Amniotic fluid stem cells increase embryo survival following injury. Stem Cells Dev 2012 Mar 20; 21(5): 675–88.Google Scholar
31Sun, H, Feng, K, Hu, J, Soker, S, Atala, A, Ma, PX. Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials 2010 Feb; 31(6): 1133–9.CrossRefGoogle ScholarPubMed
32Peister, A, Deutsch, ER, Kolambkar, Y, Hutmacher, DW, Guldberg, RE. Amniotic fluid stem cells produce robust mineral deposits on biodegradable scaffolds. Tissue Eng Part A 2009 Oct; 15(10): 3129–38.CrossRefGoogle ScholarPubMed
33Piccoli, M, Franzin, C, Bertin, E, Urbani, L, Blaauw, B, Repele, A, et al.Amniotic fluid stem cells restore the muscle cell niche in a HSA-Cre, Smn(F7/F7) mouse model. Stem Cells 2012 Aug; 30(8): 1675–84.Google Scholar
34Ren, G, Chen, X, Dong, F, Li, W, Ren, X, Zhang, Y, et al.Concise review: mesenchymal stem cells and translational medicine: emerging issues. Stem Cells Transl Med 2012 Jan; 1(1): 51–8.Google Scholar
35Dominici, M, Le, BK, Mueller, I, Slaper-Cortenbach, I, Marini, F, Krause, D, et al.Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006 8(4): 315–7.Google Scholar
36Kaviani, A, Perry, TE, Dzakovic, A, Jennings, RW, Ziegler, MM, Fauza, DO. The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg 2001 Nov; 36(11): 1662–5.CrossRefGoogle ScholarPubMed
37Roubelakis, MG, Pappa, KI, Bitsika, V, Zagoura, D, Vlahou, A, Papadaki, HA, et al.Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev 2007 Dec; 16(6): 931–52.Google Scholar
38Tsai, MS, Hwang, SM, Chen, KD, Lee, YS, Hsu, LW, Chang, YJ, et al.Functional network analysis of the transcriptomes of mesenchymal stem cells derived from amniotic fluid, amniotic membrane, cord blood, and bone marrow. Stem Cells 2007 Oct; 25(10): 2511–23.Google Scholar
39Janssens, S, Dubois, C, Bogaert, J, Theunissen, K, Deroose, C, Desmet, W, et al.Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 2006 Jan 14; 367(9505): 113–21.Google Scholar
40Zhao, P, Ise, H, Hongo, M, Ota, M, Konishi, I, Nikaido, T. Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 2005 Mar 15; 79(5): 528–35.Google Scholar
41Cipriani, S, Bonini, D, Marchina, E, Balgkouranidou, I, Caimi, L, Grassi, ZG, et al.Mesenchymal cells from human amniotic fluid survive and migrate after transplantation into adult rat brain. Cell Biol Int 2007 Aug; 31(8): 845–50.Google Scholar
42Deng, J, Petersen, BE, Steindler, DA, Jorgensen, ML, Laywell, ED. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 2006 Apr; 24(4): 1054–64.Google Scholar
43Crigler, L, Robey, RC, Asawachaicharn, A, Gaupp, D, Phinney, DG. Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 2006 Mar; 198(1): 5464.Google Scholar
44Kunisaki, SM, Jennings, RW, Fauza, DO. Fetal cartilage engineering from amniotic mesenchymal progenitor cells. Stem Cells Dev 2006 Apr; 15(2): 245–53.Google Scholar
45Kunisaki, SM, Freedman, DA, Fauza, DO. Fetal tracheal reconstruction with cartilaginous grafts engineered from mesenchymal amniocytes. J Pediatr Surg 2006 Apr; 41(4): 675–82.Google Scholar
46Gray, FL, Turner, CG, Ahmed, A, Calvert, CE, Zurakowski, D, Fauza, DO. Prenatal tracheal reconstruction with a hybrid amniotic mesenchymal stem cells-engineered construct derived from decellularized airway. J Pediatr Surg 2012 Jun; 47(6): 1072–9.Google Scholar
47Pan, HC, Yang, DY, Chiu, YT, Lai, SZ, Wang, YC, Chang, MH, et al.Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cell. J Clin Neurosci 2006 Jun; 13(5): 570–5.Google Scholar
48Pan, HC, Cheng, FC, Chen, CJ, Lai, SZ, Lee, CW, Yang, DY, et al.Post-injury regeneration in rat sciatic nerve facilitated by neurotrophic factors secreted by amniotic fluid mesenchymal stem cells. J Clin Neurosci 2007 Nov; 14(11): 1089–98.Google Scholar
49Pan, HC, Chen, CJ, Cheng, FC, Ho, SP, Liu, MJ, Hwang, SM, et al.Combination of G-CSF administration and human amniotic fluid mesenchymal stem cell transplantation promotes peripheral nerve regeneration. Neurochem Res 2009 Mar; 34(3): 518–27.CrossRefGoogle ScholarPubMed
50Cheng, FC, Tai, MH, Sheu, ML, Chen, CJ, Yang, DY, Su, HL, et al.Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. J Neurosurg 2010 Apr; 112(4): 868–79.Google Scholar
51Pan, HC, Chin, CS, Yang, DY, Ho, SP, Chen, CJ, Hwang, SM, et al.Human amniotic fluid mesenchymal stem cells in combination with hyperbaric oxygen augment peripheral nerve regeneration. Neurochem Res 2009 Jul; 34(7): 1304–16.Google Scholar
52Pan, HC, Yang, DY, Ho, SP, Sheu, ML, Chen, CJ, Hwang, SM, et al.Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto. J Biomed Sci 2009 16: 75.Google Scholar
53Yang, DY, Sheu, ML, Su, HL, Cheng, FC, Chen, YJ, Chen, CJ, et al.Dual regeneration of muscle and nerve by intravenous administration of human amniotic fluid-derived mesenchymal stem cells regulated by stromal cell-derived factor-1alpha in a sciatic nerve injury model. J Neurosurg 2012 Jun; 116(6): 1357–67.Google Scholar
54Fuchs, JR, Kaviani, A, Oh, JT, LaVan, D, Udagawa, T, Jennings, RW, et al.Diaphragmatic reconstruction with autologous tendon engineered from mesenchymal amniocytes. J Pediatr Surg 2004 Jun; 39(6): 834–8.Google Scholar
55Kunisaki, SM, Fuchs, JR, Kaviani, A, Oh, JT, LaVan, DA, Vacanti, JP, et al.Diaphragmatic repair through fetal tissue engineering: a comparison between mesenchymal amniocyte- and myoblast-based constructs. J Pediatr Surg 2006 Jan; 41(1): 34–9.Google Scholar
56Steigman, SA, Ahmed, A, Shanti, RM, Tuan, RS, Valim, C, Fauza, DO. Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J Pediatr Surg 2009 Jun; 44(6): 1120–6.Google Scholar
57Turner, CG, Klein, JD, Gray, FL, Ahmed, A, Zurakowski, D, Fauza, DO. Craniofacial repair with fetal bone grafts engineered from amniotic mesenchymal stem cells. J Surg Res 2012 Dec; 178(2): 785–90.Google Scholar
58Pipino, C, Shangaris, P, Resca, E, Zia, S, Deprest, J, Sebire, NJ, et al.Placenta as a reservoir of stem cells: an underutilized resource? Br Med Bull 2013 105: 4367.Google Scholar
59Bacenkova, D, Rosocha, J, Tothova, T, Rosocha, L, Sarissky, M. Isolation and basic characterization of human term amnion and chorion mesenchymal stromal cells. Cytotherapy 2011 Oct; 13(9): 1047–56.Google Scholar
60Soncini, M, Vertua, E, Gibelli, L, Zorzi, F, Denegri, M, Albertini, A, et al.Isolation and characterization of mesenchymal cells from human fetal membranes. J Tissue Eng Regen Med 2007 Jul; 1(4): 296305.Google Scholar
61Igura, K, Zhang, X, Takahashi, K, Mitsuru, A, Yamaguchi, S, Takashi, TA. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 2004 6(6): 543–53.CrossRefGoogle ScholarPubMed
62Sudo, K, Kanno, M, Miharada, K, Ogawa, S, Hiroyama, T, Saijo, K, et al.Mesenchymal progenitors able to differentiate into osteogenic, chondrogenic, and/or adipogenic cells in vitro are present in most primary fibroblast-like cell populations. Stem Cells 2007 Jul; 25(7): 1610–7.Google Scholar
63Bailo, M, Soncini, M, Vertua, E, Signoroni, PB, Sanzone, S, Lombardi, G, et al.Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 2004 Nov 27; 78(10): 1439–48.Google Scholar
64Banas, A, Teratani, T, Yamamoto, Y, Tokuhara, M, Takeshita, F, Osaki, M, et al.IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury. Stem Cells 2008 Oct; 26(10): 2705–12.Google Scholar
65Yen, BL, Huang, HI, Chien, CC, Jui, HY, Ko, BS, Yao, M, et al.Isolation of multipotent cells from human term placenta. Stem Cells 2005 23(1): 39.Google Scholar
66Battula, VL, Bareiss, PM, Treml, S, Conrad, S, Albert, I, Hojak, S, et al.Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation. Differentiation 2007 Apr; 75(4): 279–91.Google Scholar
67Guillot, PV, Gotherstrom, C, Chan, J, Kurata, H, Fisk, NM. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells 2007 Mar; 25(3): 646–54.Google Scholar
68Fujimoto, KL, Miki, T, Liu, LJ, Hashizume, R, Strom, SC, Wagner, WR, et al.Naive rat amnion-derived cell transplantation improved left ventricular function and reduced myocardial scar of postinfarcted heart. Cell Transplant 2009 18(4): 477–86.Google Scholar
69Schmidt, D, Mol, A, Breymann, C, Achermann, J, Odermatt, B, Gossi, M, et al.Living autologous heart valves engineered from human prenatally harvested progenitors. Circulation 2006 Jul 4; 114(1 Suppl): I125–I131.Google Scholar
70Ishikane, S, Ohnishi, S, Yamahara, K, Sada, M, Harada, K, Mishima, K, et al.Allogeneic injection of fetal membrane-derived mesenchymal stem cells induces therapeutic angiogenesis in a rat model of hind limb ischemia. Stem Cells 2008 Oct; 26(10): 2625–33.Google Scholar
71Hwang, JH, Shim, SS, Seok, OS, Lee, HY, Woo, SK, Kim, BH, et al.Comparison of cytokine expression in mesenchymal stem cells from human placenta, cord blood, and bone marrow. J Korean Med Sci 2009 Aug; 24(4): 547–54.Google Scholar
72Prather, WR, Toren, A, Meiron, M, Ofir, R, Tschope, C, Horwitz, EM. The role of placental-derived adherent stromal cell (PLX-PAD) in the treatment of critical limb ischemia. Cytotherapy 2009 11(4): 427–34.Google Scholar
73Kranz, A, Wagner, DC, Kamprad, M, Scholz, M, Schmidt, UR, Nitzsche, F, et al.Transplantation of placenta-derived mesenchymal stromal cells upon experimental stroke in rats. Brain Res 2010 Feb 22; 1315: 128–36.Google Scholar
74Yarygin, KN, Kholodenko, IV, Konieva, AA, Burunova, VV, Tairova, RT, Gubsky, LV, et al.Mechanisms of positive effects of transplantation of human placental mesenchymal stem cells on recovery of rats after experimental ischemic stroke. Bull Exp Biol Med 2009 Dec; 148(6): 862–8.Google Scholar
75Cargnoni, A, Gibelli, L, Tosini, A, Signoroni, PB, Nassuato, C, Arienti, D, et al.Transplantation of allogeneic and xenogeneic placenta-derived cells reduces bleomycin-induced lung fibrosis. Cell Transplant 2009 18(4): 405–22.Google Scholar
76Lanzoni, G, Alviano, F, Marchionni, C, Bonsi, L, Costa, R, Foroni, L, et al.Isolation of stem cell populations with trophic and immunoregulatory functions from human intestinal tissues: potential for cell therapy in inflammatory bowel disease. Cytotherapy 2009 11(8): 1020–31.Google Scholar
77Kadam, S, Muthyala, S, Nair, P, Bhonde, R. Human placenta-derived mesenchymal stem cells and islet-like cell clusters generated from these cells as a novel source for stem cell therapy in diabetes. Rev Diabet Stud 2010 7(2): 168–82.Google Scholar
78Chang, CM, Kao, CL, Chang, YL, Yang, MJ, Chen, YC, Sung, BL, et al.Placenta-derived multipotent stem cells induced to differentiate into insulin-positive cells. Biochem Biophys Res Commun 2007 Jun 1; 357(2): 414–20.Google Scholar
79Soon-Shiong, P, Feldman, E, Nelson, R, Heintz, R, Yao, Q, Yao, Z, et al.Long-term reversal of diabetes by the injection of immunoprotected islets. Proc Natl Acad Sci USA 1993 Jun 15 90(12): 5843–7.Google Scholar
80Kawamichi, Y, Cui, CH, Toyoda, M, Makino, H, Horie, A, Takahashi, Y, et al.Cells of extraembryonic mesodermal origin confer human dystrophin in the mdx model of Duchenne muscular dystrophy. J Cell Physiol 2010 Jun; 223(3): 695702.Google Scholar
81Zhang, X, Mitsuru, A, Igura, K, Takahashi, K, Ichinose, S, Yamaguchi, S, et al.Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochem Biophys Res Commun 2006 Feb 17; 340(3): 944–52.Google Scholar
82Wei, JP, Nawata, M, Wakitani, S, Kametani, K, Ota, M, Toda, A, et al.Human amniotic mesenchymal cells differentiate into chondrocytes. Cloning Stem Cells 2009 Mar; 11(1): 1926.Google Scholar
83Miki, T, Lehmann, T, Cai, H, Stolz, DB, Strom, SC. Stem cell characteristics of amniotic epithelial cells. Stem Cells 2005 Nov; 23(10): 1549–59.Google Scholar
84Miki, T, Marongiu, F, Dorko, K, Ellis, EC, Strom, SC. Isolation of amniotic epithelial stem cells. Curr Protoc Stem Cell Biol 2010 Jan; Chapter 1: Unit 1E.3.CrossRefGoogle ScholarPubMed
85Wolbank, S, van, GM, Grillari-Voglauer, R, Peterbauer-Scherb, A. Alternative sources of adult stem cells: human amniotic membrane. Adv Biochem Eng Biotechnol 2010 123: 127.Google Scholar
86Pratama, G, Vaghjiani, V, Tee, JY, Liu, YH, Chan, J, Tan, C, et al.Changes in culture expanded human amniotic epithelial cells: implications for potential therapeutic applications. PLoS One 2011 6(11): e26136.Google Scholar
87Parolini, O, Alviano, F, Bagnara, GP, Bilic, G, Buhring, HJ, Evangelista, M, et al.Concise review: isolation and characterization of cells from human term placenta: outcome of the First International Workshop on Placenta-Derived Stem Cells. Stem Cells 2008 Feb; 26(2): 300–11.Google Scholar
88Vosdoganes, P, Hodges, RJ, Lim, R, Westover, AJ, Acharya, RY, Wallace, EM, et al.Human amnion epithelial cells as a treatment for inflammation-induced fetal lung injury in sheep. Am J Obstet Gynecol 2011 Aug; 205(2): 156–33.Google Scholar
89Moodley, Y, Ilancheran, S, Samuel, C, Vaghjiani, V, Atienza, D, Williams, ED, et al.Human amnion epithelial cell transplantation abrogates lung fibrosis and augments repair. Am J Respir Crit Care Med 2010 Sep 1; 182(5): 643–51.CrossRefGoogle ScholarPubMed
90Murphy, S, Lim, R, Dickinson, H, Acharya, R, Rosli, S, Jenkin, G, et al.Human amnion epithelial cells prevent bleomycin-induced lung injury and preserve lung function. Cell Transplant 2011 20(6): 909–23.Google Scholar
91Ilancheran, S, Michalska, A, Peh, G, Wallace, EM, Pera, M, Manuelpillai, U. Stem cells derived from human fetal membranes display multilineage differentiation potential. Biol Reprod 2007 Sep; 77(3): 577–88.Google Scholar
92Wei, JP, Zhang, TS, Kawa, S, Aizawa, T, Ota, M, Akaike, T, et al.Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant 2003 12(5): 545–52.Google Scholar
93Kakishita, K, Elwan, MA, Nakao, N, Itakura, T, Sakuragawa, N. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson's disease: a potential source of donor for transplantation therapy. Exp Neurol 2000 Sep; 165(1): 2734.Google Scholar
94Meng, XT, Li, C, Dong, ZY, Liu, JM, Li, W, Liu, Y, et al.Co-transplantation of bFGF-expressing amniotic epithelial cells and neural stem cells promotes functional recovery in spinal cord-injured rats. Cell Biol Int 2008 Dec; 32(12): 1546–58.Google Scholar
95Sankar, V, Muthusamy, R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 2003 118(1): 11–7.Google Scholar