Skip to main content
    • Aa
    • Aa

Mating system and recombination affect molecular evolution in four Triticeae species

  • A. HAUDRY (a1) (a2), A. CENCI (a1), C. GUILHAUMON (a1), E. PAUX (a3), S. POIRIER (a1), S. SANTONI (a1), J. DAVID (a1) and S. GLÉMIN (a2)...

Mating systems and recombination are thought to have a deep impact on the organization and evolution of genomes. Because of the decline in effective population size and the interference between linked loci, the efficacy of selection is expected to be reduced in regions with low recombination rates and in the whole genome of self-fertilizing species. At the molecular level, relaxed selection is expected to result in changes in the rate of protein evolution and the pattern of codon bias. It is increasingly recognized that recombination also affects non-selective processes such as the biased gene conversion towards GC alleles (bGC). Like selection, this kind of meiotic drive in favour of GC over AT alleles is expected to be reduced in weakly recombining regions and genomes. Here, we investigated the effect of mating system and recombination on molecular evolution in four Triticeae species: two outcrossers (Secale cereale and Aegilops speltoides) and two selfers (Triticum urartu and Triticum monococcum). We found that GC content, possibly driven by bGC, is affected by mating system and recombination as theoretically predicted. Selection efficacy, however, is only weakly affected by mating system and recombination. We investigated the possible reasons for this discrepancy. A surprising one is that, in outcrossing lineages, selection efficacy could be reduced because of high substitution rates in favour of GC alleles. Outcrossers, but not selfers, would thus suffer from a ‘GC-induced’ genetic load. This result sheds new light on the evolution of mating systems.

Corresponding author
*Corresponding author. Telephone: (+33) 4 67 14 48 18. Fax: (+33) 4 67 14 36 10. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

E. D. Akhunov , A. W. Goodyear , S. Geng , L. L. Qi , B. Echalier , B. S. Gill , T. Miftahudin , J. P. Gustafson , G. Lazo , S. Chao , (2003 b). The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Research 13, 753763.

H. G. Baker (1955). Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9, 347348.

A. Barakat , N. Carels & G. Bernardi (1997). The distribution of genes in the genome of gramineae. Proceedings of the National Academy of Sciences of the USA 94, 68576861.

J. P. Bielawski & Z. Yang (2004). A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. Journal of Molecular Evolution 59, 121132.

B. Charlesworth (1992). Evolutionary rates in partially self-fertilizing species. The American Naturalist 140, 126148.

D. Charlesworth & S. I. Wright (2001). Breeding systems and genome evolution. Current Opinion in Genetics & Development 11, 685690.

J. Dvorak , P. Diterlizzi , H. B. Zhang & P. Resta (1993). The evolution of polyploid wheats: identification of the A-genome donor species. Genome 36, 2131.

T. R. Endo & B. S. Gill (1996). The deletion stocks of common wheat. Journal of Heredity 87, 295307.

N. Galtier & L. Duret (2007). Adaptation or biased gene conversion? Extending the null hypothesis of molecular evolution. Trends in Genetics 23, 273277.

S. Glémin , E. Bazin & D. Charlesworth (2006). Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proceedings of the Royal Society of London, Series B 273, 30113019.

S. E. P. Guindon & O. Gascuel (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696704.

P. R. Haddrill , D. L. Halligan , D. Tomaras & B. Charlesworth (2007). Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over. Genome Biology 8, R18.

J. L. Hamrick & M. J. W. Godt (1996). Effects of life history traits on genetic diversity in plants species. Philosophical Transactions of the Royal Society of London, Series B 351, 12911298.

S. Huang , A. Sirikhachornkit , X. Su , J. Faris , B. Gill , R. Haselkorn & P. Gornicki (2002). Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proceedings of the National Academy of Sciences of the USA 99, 81338138.

P. K. Ingvarsson (2002). A metapopulation perspective on genetic diversity and differentiation in partially self-fertilizing plants. Evolution 56, 23682373.

A. Kawabe & N. T. Miyashita (2003). Patterns of codon usage bias in three dicot and four monocot plant species. Genes and Genetic Systems 78, 343352.

Q. Liu & Q. Xue (2005). Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant species. Journal of Genetics 84, 5562.

A. J. Lukaszewski (1992). A comparision of physical distribution of recombination in chromosome 1R in diploid rye and in hexaploid triticale. Theoretical and Applied Genetics 83, 10481053.

A. J. Lukaszewski & C. A. Curtis (1993). Physical distribution of recombination in B-genome chromosomes of tetraploid wheat. Theoretical and Applied Genetics 86, 121127.

A. Lundqvist (1954). Studies on self-sterility in rye, Secale cereale L. Hereditas 40, 278294.

G. Marais (2003). Biased gene conversion: implications for genome and sex evolution. Trends in Genetics 19, 330338.

G. Marais , B. Charlesworth & S. I. Wright (2004). Recombination and base composition: the case of the highly self-fertilizing plant Arabidopsis thaliana. Genome Biology 5, R45.

J. Meunier & L. Duret (2004). Recombination drives the evolution of GC-content in the human genome. Molecular Biology and Evolution 21, 984990.

J. D. Munkvold , R. A. Greene , C. E. Bertmudez-Kandianis , C. M. La Rota , H. Edwards , S. F. Sorrells , T. Dake , D. Benscher , R. Kantety , A. M. Linkiewicz , (2004). Group 3 chromosome bin maps of wheat and their relationship to rice chromosome 1. Genetics 168, 639650.

H. Nybom (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology 13, 11431155.

C. Pal , B. Papp & L. D. Hurst (2001). Does the recombination rate affect the efficiency of purifying selection? The yeast genome provides a partial answer. Molecular Biology and Evolution 18, 23232326.

E. Paux , D. Roger , E. Badaeva , G. Gay , M. Bernard , P. Sourdille & C. Feuillet (2006). Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. The Plant Journal 48, 463474.

K. S. Pollard , S. R. Salama , B. King , A. D. Kern , T. Dreszer , S. Katzman , A. Siepel , J. S. Pedersen , G. Bejerano , R. Baertsch , (2006). Forces shaping the fastest evolving regions in the human genome. PLoS Genetics 2, e168.

L. L. Qi , B. Echalier , S. Chao , G. R. Lazo , G. E. Butler , O. D. Anderson , E. D. Akhunov , J. Dvorak , A. M. Linkiewicz , A. Ratnasiri , (2004). A chromosome bin map of 16 000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168, 701712.

M. Rota & M. E. Sorrells (2004). Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Functional and Integrative Genomics 4, 3446.

J. Safar , J. Bartos , J. Janda , A. Bellec , M. Kubalakova , M. Valarik , S. Pateyron , J. Weiserova , R. Tuskova , J. Cihalikova , (2004). Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. The Plant Journal 39, 960968.

T. Sasaki , T. Matsumoto , K. Yamamoto , K. Sakata , T. Baba , Y. Katayose , J. Wu , Y. Niimura , Z. Cheng , Y. Nagamura , (2002). The genome sequence and structure of rice chromosome 1. Nature 420, 312316.

D. J. Schoen & A. H. D. Brown (1991). Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proceedings of the National Academy of Sciences of the USA 88, 44944497.

R. Staden , D. P. Judge & J. K. Bonfield (2001). Sequence assembly and finishing methods. Methods of Biochemical Analysis 43, 303322.

N. Sueoka (1962). On the genetic basis of variation and heterogeneity of DNA base composition. Proceedings of the National Academy of Sciences of the USA 48, 582592.

N. Takebayashi & P. L. Morrell (2001). Is self-fertilization an evolutionary dead end? Revisiting an old hypothesis with genetic theories and a macroevolutionary approach. American Journal of Botany 88, 11431150.

L. J. Wang & M. J. Roossinck (2006). Comparative analysis of expressed sequences reveals a conserved pattern of optimal codon usage in plants. Plant Molecular Biology 61, 699710.

G. K. Wong , J. Wang , L. Tao , J. Tan , J. Zhang , D. A. Passey & J. Yu (2002). Compositional gradients in Gramineae genes. Genome Research 12, 851856.

S. I. Wright , B. Lauga & D. Charlesworth (2002). Rates and patterns of molecular evolution in inbred and outbred Arabidopsis. Molecular Biology and Evolution 19, 14071420.

S. I. Wright , G. Iorgovan , S. Misra & M. Mokhtari (2007). Neutral evolution of synonymous base composition in the Brassicaceae. Journal of Molecular Evolution 64, 136141.

K. Yamane & T. Kawahara (2005). Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. American Journal of Botany 92, 18871898.

Z. Yang (1998). Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Molecular Biology and Evolution 15, 568573.

Z. Yang & R. Nielsen (1998). Synonymous and nonsynonymous rate variation in nuclear genes of mammals. Journal of Molecular Evolution 46, 409418.

Z. Yang & W. J. Swanson (2002). Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Molecular Biology and Evolution 19, 4957.

Z. Yang , W. S. Wong & R. Nielsen (2005). Bayes empirical bayes inference of amino acid sites under positive selection. Molecular Biology and Evolution 22, 11071118.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Genetics Research
  • ISSN: 0016-6723
  • EISSN: 1469-5073
  • URL: /core/journals/genetics-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 1
Total number of PDF views: 11 *
Loading metrics...

Abstract views

Total abstract views: 75 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 26th March 2017. This data will be updated every 24 hours.