Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Miladinovic, Branko and Tsokos, Chris P. 2012. Bayesian Quantiles of Extremes. Journal of Statistical Theory and Practice, Vol. 6, Issue. 3, p. 566.


Extreme value theory in analysis of differential expression in microarrays where either only up- or down-regulated genes are relevant or expected

  • DOI:
  • Published online: 08 October 2008

We propose an empirical Bayes method based on the extreme value theory (EVT) (BE) for the analysis of data from spotted microarrays where the interest of the investigator (e.g. to identify up-regulated gene markers of a disease) or the design of the experiment (e.g. in certain ‘wild-type versus mutant’ experiments) limits identification of differentially expressed genes to those regulated in a single direction (either up or down). In such experiments, unlike in genome-wide microarrays, analysis is restricted to the tail of the distribution (extremes) of all the genes in the genome. The EVT provides a platform to account for this extreme behaviour, and is therefore a natural candidate for inference about differential expression. We compared the performance of the developed BE method with two other empirical Bayes methods on two real ‘wild-type versus mutant’ datasets where a single direction of regulation was expected due to experimental design, and in a simulation study. The BE method appears to have a better fit to the real data. In the analysis of simulated data, the BE method showed better accuracy and precision while being robust to different characteristics of microarray experiments. The BE method, therefore, seems promising and useful for inference about differential expression in microarrays where either only up- or down-regulated genes are relevant or expected.

Corresponding author
*Corresponding author. Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA. Tel: +1(607) 2533052. Fax. +1 (607) 2533083. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Y. Benjamini & Y. Hochberg (1995). Controlling the false discovery rate – a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B 57, 289300.

D. Bhowmick , A. C. Davison , D. R. Goldstein & Y. Ruffieux (2006). A Laplace mixture model for identification of differential expression in experiments. Biostatistics 7, 630641.

M. Bischoff , P. Dunman , J. Kormanec , D. Macapagal , E. Murphy , W. Mounts , B. Berger-Bachi & S. Projan (2004). Microarray-based analysis of the Staphylococcus aureus σB regulon. Journal of Bacteriology 186, 40854099.

W. S. Cleveland & S. J. Devlin (1988). Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association 83, 596610.

S. Coles (2001). An Introduction to Statistical Modeling of Extreme Values. Springer Series in Statistics. Berlin: Springer.

B. Efron , R. Tibshirani , J. D. Storey & V. Tusher (2001). Empirical Bayes analysis of a microarray experiment. Journal of the American Statistical Association 96, 11511160.

R. Gottardo , J. A. Pannucci , C. R. Kuske & T. Brettin (2003). Statistical analysis of microarray data: a Bayesian approach. Biostatistics 4, 597620.

M. J. Kazmierczak , S. C. Mithoe , K. J. Boor & M. Wiedmann (2003). Listeria monocytogenes σB regulates stress response and virulence functions. Journal of Bacteriology 185, 57225734.

K. Kobayashi , M. Nishioka , T. Kohno , M. Nakamoto , A. Maeshima , K. Aoyagi , H. Sasaki , S. Takenoshita , H. Sugimura & J. Yokota (2004). Identification of genes whose expression is upregulated in lung adenocarcinoma cells in comparison with type II alveolar cells and bronchiolar epithelial cells in vivo. Oncogene 23, 30893096.

M. Langaas , B. H. Lindqvist & E. Ferkingstad (2005). Estimating the proportion of true null hypotheses, with application to DNA microarray data. Journal of the Royal Statistical Society, Series B 67, 555572.

Y. Liu-Stratton , S. Roy & C. K. Sen (2004). DNA microarray technology in nutraceutical and food safety. Toxicology Letters 150, 2942.

I. Lonnstedt & T. Britton (2005). Hierarchical Bayes models for cDNA microarray gene expression. Biostatistics 6, 279291.

J. A. Nelder & R. Mead (1965). A simplex algorithm for function minimization. Computer Journal 7, 308313.

M. A. Newton , A. Noueiry , D. Sarkar & P. Ahlquist (2004). Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5, 155176.

H. H. Panjer (2006). Fitting extreme value models. In Operational Risk: Modeling Analytics (ed. H. H. Panjar ), pp. 383393. New York: John Wiley and Sons.

Y. Pawitan , S. Michiels , S. Koscielny , A. Gusnanto & A. Ploner (2005). False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 21, 30173024.

R. L. Smith (1985). Maximum likelihood estimation in a class of non-regular cases. Biometrika 72, 6790.

G. K. Smyth (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology 3, Article 3.

G. K. Smyth (2005). Limma: linear models for microarray data. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor (ed. R. Gentleman , V. Carey , S. Dudoit , R. Irizarry & W. Huber ), pp. 397420. New York: Springer.

G. K. Smyth , J. Michaud & H. Scott (2005). The use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics 21, 20672075.

H. Suzuki , E. Gabrielson , W. Chen , R. Anbazhagan , M. van Engeland , M. P. Weijenberg , J. G. Herman & S. B. Baylin (2002). A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nature Genetics 31, 141149.

M. A. Tanner (1996). Tools for Statistical Inference. Methods for the Exploration of Posterior Distributions and Likelihood Functions. New York: Springer-Verlag.

J. R. Taylor (1982). An Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements. Herndon, VA: University Science Books.

V. G. Tusher , R. Tibshirani & G. Chu (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences of the USA 98, 51165121.

W. van Schaik , M. van der Voort , D. Molenaar , R. Moezelaar , W. M. de Vos & T. Abee (2007). Identification of the σB regulon of Bacillus cereus and conservation of σB-regulated genes in low-GC-content Gram-positive bacteria. Journal of Bacteriology 18, 43844390.

K. J. F. Verhoeven , K. L. Simonsen & L. M. McIntyre (2005). Implementing false discovery rate control: increasing your power. Oikos 108, 643647.

B. Wu , Z. Guan & H. Zhao (2006). Parametric and nonparametric FDR estimation revisited. Biometrics 62, 735744.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Genetics Research
  • ISSN: 0016-6723
  • EISSN: 1469-5073
  • URL: /core/journals/genetics-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
Type Description Title
Supplementary Materials

Ivanek supplementary material

 Unknown (207 KB)
207 KB