Skip to main content Accessibility help
×
Home

Genetic studies of three sibling species of Drosophila with relationship to theories of speciation

Published online by Cambridge University Press:  14 April 2009


Jerry A. Coyne
Affiliation:
Department of Zoology, the University of Maryland, College Park, MD 20742, USA

Summary

Drosophila melanogaster, D. simulans and D. mauritiana are closely related species, the first two cosmopolitan and the last restricted to the oceanic island of Mauritius. D. simulans and D. mauritiana are the most closely related pair, with the latter species probably resulting from a founder event. The relatedness of the three species and their ability to hybridize allow tests of recent theories of speciation. Genetic analysis of two characters differing between D. simulans and D. mauritiana (sex comb tooth number and testis colour) show that the differences are due to at least five and three loci respectively. Behavioural tests further demonstrate that sex combs are probably used by males at a crucial step in mating, and that the differences between the two species may be related to differences in their mating ability. These genetic studies and previous work indicate that differences among these species are polygenic and not (as proposed by recent theories) attributable to only one or two loci of large effect. Further studies of interspecific hybrids show that genetic divergence leading to developmental anomalies is more advanced in the older species pair D. simulans/D. melanogaeter than in the younger pair D. simulans/D. mauritiana. This supports the neo-Darwinian contention that reproductive isolation is one step in a continuous process of genetic change among isolated populations, and does not support current theories that such change occurs only during the evolution of reproductive isolation. Finally, investigations of the degree of gonadal atrophy and its sensitivity to temperature in D. simulans/D. mauritiana hybrids fail to support recent speculations that phenomena similar to hybrid dysgenesis (which causes such atrophy in D. melanogaster) play a role in speciation.


Type
Research Article
Copyright
Copyright © Cambridge University Press 1985

References

Ahearn, J. N. (1980). Evolution of behavioral reproductive isolation in a laboratory stock of Drosophila silvestris. Experientia 36, 6364.CrossRefGoogle Scholar
Avise, J. C. (1976). Genetic differentiation during speciation. In Molecular Evolution (ed. Ayala, F. J.), pp. 106122. Sunderland, Massachussetts, Sinauer.Google Scholar
Ayala, F. J. (1975). Genetic differentiation during the speciation process. Evolutionary Biology 8, 173.Google Scholar
Barnes, S. R., Webb, D. A. & Dover, G. (1978). The distribution of satellite and main-band DNA components in the melanogaster species subgroup of Drosophila. Chromosomu 67, 341363.CrossRefGoogle ScholarPubMed
Barton, N. & Charlesworth, B. (1984). Genetic revolutions, founder effects, and speciation. Annual Review of Ecology and Systematics 15, 133164.CrossRefGoogle Scholar
Biddle, R. L. (1932). The bristles of hybrids between Drosophila melanogaster and Drosophila simulans. Genetics 17, 153174.Google ScholarPubMed
Bingham, P. M., Kidwell, M. G. & Rubin, G. M. (1982). The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain specific transposon family. Cell 29, 9951004.CrossRefGoogle Scholar
Bock, J. R. (1984). Interspecific hybridization in the genus Drosophila. Evolutionary Biology 18, 4170.CrossRefGoogle Scholar
Bodmer, M. & Ashburner, M. (1984). Conservation and change in the DNA sequences coding for alcohol dehydrogenase in sibling species of Drosophila. Nature 309, 425429.CrossRefGoogle ScholarPubMed
Bregliano, J.-C. & Kidwell, M. G. (1983). Hybrid dysgenesis determinants. In Mobile Genetic Elements (ed. Shapiro, J. A.), pp. 363410. London: Academic Press.Google Scholar
Carson, H. L. (1975). The genetics of speciation at the diploid level. The American Naturalist 109, 8392.CrossRefGoogle Scholar
Carson, H. L. & Kaneshiro, K. Y. (1976). Drosophila of Hawaii: systematics and ecological genetics. Annual Review of Ecology and Systematics 7, 311345.CrossRefGoogle Scholar
Carson, H. L. & Templeton, A. R. (1984). Genetic revolutions in relation to speciation phenomena: the founding of new populations. Annual Review of Ecology and Systematics 15, 97131.CrossRefGoogle Scholar
Charlesworth, B., Lande, R. & Slatkin, M. (1982). A neo-Darwinian commentary on macroevolution. Evolution 36, 11011118.CrossRefGoogle ScholarPubMed
Coen, E., Strachan, T. & Dover, G. (1982). Dynamics of concerted evolution of ribosomal DNA and histone gene families in the melanogaster species subgroup of Drosophila. Journal of Molecular Biology 158, 1735.CrossRefGoogle ScholarPubMed
Cohn, V. H., Thompson, M. A. & Moore, G. P. (1984). Nucleotide sequence comparison of the Adh gene in three drosophilids. Journal of Molecular Biology 20, 3137.Google ScholarPubMed
Cook, R. M. (1977). Behavioral role of the sexcombs in Drosophila melanogasler and Drosophila simulans. Behavior Genetics 7, 349357.CrossRefGoogle Scholar
Coyne, J. A. (1983). Genetic basis of differences in genital morphology among three sibling species of Drosophila. Evolution 37, 11011118.CrossRefGoogle ScholarPubMed
Coyne, J. A. (1984). Genetic basis of male sterility in hybrids between two closely related species of Drosophila. Proceedings of the National Academy of Science USA 81, 44444447.CrossRefGoogle ScholarPubMed
Coyne, J. A. (1985). The genetic basis of Haldane's rule. Nature 314, 736738.CrossRefGoogle ScholarPubMed
David, J., Lemeunier, F., Tsacas, K. & Bouquet, C. (1974). Hybridation d'une nouvelle espèce Drosophila mauritiana avec D. melanogaster et D. simulans. Annales de Génétique 17, 235241.Google Scholar
David, J., Bocquet, C., Lemeunier, F. & Tsacas, L. (1976). Persistence of male sterility in strains issued from hybrids between two sibling species: Drosophila simulans and D. mauritiana. Journal of Genetics 62, 93100.CrossRefGoogle Scholar
Dobzhansky, T. (1951). Genetics and the Origin of Species. New York. Columbia University Press.Google Scholar
Douglas, M. E. & Avise, J. C. (1982). Speciation rates and morphological divergence in fishes: tests of gradual versus rectangular modes of evolutionary change. Evolution 36, 224232.CrossRefGoogle ScholarPubMed
Engels, W. R. & Preston, C. R. (1979). Hybrid dysgenesis in Drosophila melanogaster: the biology of male and female sterility. Genetics 92, 161174.Google Scholar
Falconer, D. S. (1960). Quantitative Genetics. New York: Ronald Press.Google Scholar
Ginzburg, L. R., Bingham, P. M. & Yoo, S. (1984). On the theory of speciation induced by transposable elements. Genetics 107, 331341.Google ScholarPubMed
Gonzales, A. M., Cabrera, V. M., Larrunga, J. M. & Gullon, A. (1982). Genetic distance in the sibling species Drosophila melanogaster, D. simulans, and D. mauritiana. Evolution 36, 517522.CrossRefGoogle Scholar
Gould, S. J. (1977). Ontogeny and Phylogeny. Cambridge, MA: Harvard University Press.Google Scholar
Gould, S. J. (1980). Is a new and general theory of evolution emerging? Paleobiology 6, 119130.CrossRefGoogle Scholar
Hodgson, E. S. (1974). Chemoreception. In The Physiology of Insecta 2nd ed. vol. II ed. Rockstein, M., pp. 127164. London: Academic Press.CrossRefGoogle Scholar
Horton, I. H. (1939). A comparison of the salivary gland chromosomes of Drosophila melanogaster and D. simulans. Genetics 24, 234243.Google ScholarPubMed
Kidwell, M. G. (1983). Evolution of hybrid dysgenesis determinants in Drosophila melanogaster. Proceedings of the National Academy of Science USA 80, 16551659.CrossRefGoogle ScholarPubMed
Kidwell, M. G., Kidwell, J. F. & Sved, J. A. (1977). Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility, and male recombination. Genetice 86, 813833.Google ScholarPubMed
Kidwell, M. G. & Novy, J. B. (1979). Hybrid dysgenesis in Drosophila melanogaeter: sterility resulting from gonadal dysgenesis in the P-M system. Genetics 92, 11271140.Google ScholarPubMed
Lande, R. (1981). The minimum number of genes contributing to quantitative variation between and within populations. Genetics 99, 541553.Google ScholarPubMed
Lande, R. (1983). The response to selection on major and minor mutations affecting a metrical trait. Heredity 50, 47–45.CrossRefGoogle Scholar
Lemeunier, F. & Ashburner, M. (1976). Relationships within the melanogaster subgroup of the genus Drosophila (Sophophora). II. Phylogenetic relationships between six species based upon polytene chromosome banding sequences. Proceedings of the Royal Society of London B 193, 275294.CrossRefGoogle ScholarPubMed
Lemeunier, F. & Ashburner, M. (1984). Relationships within the melanogaster species subgroup of the genus Drosophila (Sophophora). IV. The chromosomes of two new species. Chromosoma 89, 343351.CrossRefGoogle Scholar
Lewontin, R. C. (1956). Studies on homeostasis and heteozygosity. I. General considerations. Abdominal bristle number in second chromosome homozygotes of Drosophila melanogaster. The American Naturalist 90, 237255.CrossRefGoogle Scholar
Mayr, E. (1954). Change of genetic environment and evolution. In Evohition as a Process (ed. Huxley, J., Hardy, A. C. and Ford, E. B.), pp. 157180. London: Allen and Unwin.Google Scholar
Mayr, E. (1963). Animal Species and Evolution. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Mayr, E. (1982). Speciation and macroevolution. Evolution 36, 11191132.CrossRefGoogle ScholarPubMed
Nei, M., Maruyama, T. & Wu, C.-I. (1983). Models of evolution of reproductive isolation. Genetics 103, 557579.Google ScholarPubMed
Ohnishi, S., Kawanishi, M. & Watanabe, T. K. (1983). Biochemical phytogenies of Drosophila: protein differences detected by two-dimensional electrophoresis. Genetica 61, 5563.CrossRefGoogle Scholar
Pontecorvo, G. (1943 a). Hybrid sterility in artificially produced recombinants between Drosophila melanogaster and D. simulans. Proceedings of the Royal Society of Edinburgh B 41, 385–297.Google Scholar
Pontecorvo, G. (1943 b). Viability interactions between chromosomes of Drosophila melanogaster and Drosophila simulans. Journal of Genetics 45, 5166.CrossRefGoogle Scholar
Rose, M. R. & Doolittle, W. F. (1983). Molecular biological mechanisms of speciation. Science 220, 157162.CrossRefGoogle ScholarPubMed
Schaefer, R. E., Kidwell, M. G. & Fausto-Sterling, A. (1979). Hybrid dysgenesis in Drosophila melanogaster: morphological and cytological studies of ovarian dysgenesis. Genetics 92, 11411152.Google ScholarPubMed
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed.Ames, Iowa: Iowa State University Press.Google Scholar
Sokal, R. R. & Rohlf, F. J. (1981). Biometry. San Francisco: Freeman.Google Scholar
Spieth, A. A. (1952). Mating behavior within the genus Drosophila (Diptera). Bulletin of the American Museum of Natural History 99, 395474.Google Scholar
Spirito, F., Rossi, C. & Rizzoni, M. (1983). Reduction of gene flow due to the partial sterility of heterozygotes for a chromosomal mutation. I. Studies on a ‘neutral’ gene not linked to the chromosomal mutation in a two population model. Evolution 37, 785797.Google Scholar
Stanley, S. M. (1979). Macroevolution: Pattern and Process. San Francisco: Freeman.Google Scholar
Strachan, T., Coen, E.Webb, D. & Dover, G. (1982). Modes and rates of change of complex DNA families of Drosophila. Journal of Molecular Biology 158, 3754.CrossRefGoogle ScholarPubMed
Sturtevant, A. H. (1919). A new species resembling Drosophila melanogaster. Psyche 26, 153155.CrossRefGoogle Scholar
Sturtevant, A. H. (1920). Genetic studies on Drosophila simulans. I. Introduction. Hybrids with Drosophila melanogaster. Genetics 5, 488500.Google ScholarPubMed
Sturtevant, A. H. (1929). The Genetics of Drosophila simulans. Carnegie Institute of Washington Publication no. 399, pp. 162.Google Scholar
Sved, J. A. (1979). The ‘hybrid dysgenesis’ syndrome in Drosophila melanogaster. Bioscience 29, 659664.CrossRefGoogle Scholar
Templeton, A. R. (1980). The theory of speciation via the founder principle. Genetics 94, 11011138.Google ScholarPubMed
Templeton, A. R. (1981). Mechanisms of speciation - a population genetic approach. Annual Review of Ecology and Systematics 12, 2348.CrossRefGoogle Scholar
Templeton, A. R. (1982). Genetic architectures of speciation. In Mechanisms of Speciation (ed. Barigozzi, C.), pp. 105121. New York: Alan R. Liss.Google Scholar
Thompson, J. N. Jr, Henderson, S. A. & Woodruff, R. C. (1980). Sterility and testis structure in hybrids involving male recombination lines of Drosophila melanogaster. Genetica 51, 221226.CrossRefGoogle Scholar
Tsacas, L. & David, J. (1974). Drosophila mauritiana n.sp. du groupe melanogaster de l'ile Maurice. Bulletin de la Société entomologique de France 79, 4246.Google Scholar
Weisbrot, D. (1963). Studies on differences in the genetic architecture of related species of Drosophila. Genetics 48, 11311139.Google ScholarPubMed
White, M. J. D. (1978). Modes of Speciation. San Francisco: Freeman.Google Scholar
Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding and selection in evolution. Proceedings of the Sixth International Congress of Genetics 1, 356366.Google Scholar
Wright, S. (1968). Evolution and the Genetics of Populations, vol. I, Genetic and Biometrie Foundations. Chicago: University of Chicago Press.Google Scholar
Wright, S. (1982). The shifting balance theory and macroevolution. Annual Review of Genetics 16, 119.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 48 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 3rd December 2020. This data will be updated every 24 hours.

Access
Hostname: page-component-6c64649b67-wqrdf Total loading time: 15.101 Render date: 2020-12-03T12:23:31.807Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Thu Dec 03 2020 12:15:51 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Genetic studies of three sibling species of Drosophila with relationship to theories of speciation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Genetic studies of three sibling species of Drosophila with relationship to theories of speciation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Genetic studies of three sibling species of Drosophila with relationship to theories of speciation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *