Skip to main content
×
×
Home

Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea

  • David Jonah Grunwald (a1) and George Streisinger (a1)
Summary

Recessive lethal mutations and mutations at the gol-1 locus were induced in the zebrafish by exposure of mature sperm to the alkylating agent ethyl nitrosourea (ENU). Embryonic lethal phenotypes were recognized among the parthenogenetic progeny of mutagenized animals or among the progeny of daughters of mutagenized animals. Novel specific locus mutations were identified by the failure of mutagenized chromosomes to complement pre-existing mutant alleles at the gol-1 locus. Each mutagenized individual harboured approximately 10 embryonic lethal mutations in its germ line and about 1 in 500 mutagenized animals harboured a new mutation at the gol-1 locus. Three lines of evidence indicate that the majority of mutations that were recovered following treatment of mature sperm with ENU were probably point mutations. First, the soma and germ lines of mutagenized animals were mosaic, as expected following simple alkylation of sperm DNA. Second, mutations induced by ENU at the gol-1 locus affected pigmentation but not viability, unlike the majority of mutations induced at this locus with y-irradiation. Third, the ratio of specific locus: recessive lethal mutations induced by ENU was approximately 50-fold lower than the ratio observed following mutagenesis with y-rays. Comparison of the incidence with which embryonic recessive lethal mutations were induced with the incidence with which specific locus mutations arose indicates that there are greater than 5000 genes essential to the development and viability of the zebrafish embryo.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Induction of recessive lethal and specific locus mutations in the zebrafish with ethyl nitrosourea
      Available formats
      ×
Copyright
References
Hide All
Ames, B. N., McCann, J. & Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutation Research 31, 347363.
Bode, V. C. (1984). Ethylnitrosourea mutagenesis and the isolation of mutant alleles for specific genes located in the T region of mouse chromosome 17. Genetics 108,457470.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics 77, 7194.
Chakrabarti, S., Streisinger, G., Singer, F. & Walker, C. (1983). Frequency of y-ray induced specific locus and recessive lethal mutations in mature germ cells of the zebrafish, Brachydanio rerio. Genetics 103, 109123.
Clifford, R. J. & Schupbach, T. (1989). Coordinately and differentially mutable activities of torpedo, theDrosophila melanogaster homolog of the vertebrate EGF receptor gene. Genetics 123, 771787.
Eberl, D. F. & Hilliker, A. J. (1988). Characterization of Xlinked recessive lethal mutations affecting embryonic morphogenesis inDrosophila melanogaster. Genetics 118, 109120.
Grunwald, D. J., Kimmel, C. B, Westerfield, M., Walker, C. & Streisinger, G. (1988). A neural degeneration mutation that spares primary neurons in the zebrafish. Cellularity Biology 126, 115128.
Grunwald, D. J. & Streisinger, G. (1991). Induction of mutations in the zebrafish with ultraviolet light. Genetical Research 59, 93101.
Hince, T. A. & Neale, S. (1974). A comparison of the mutagenic action of the methyl and ethyl derivatives of nitrosamides and nitrosamidines on Escherichia coli. Mutation Research 24, 383387.
Johnson, F. M. & Lewis, S. E. (1981). Electrophoretically detected germinal mutations induced in the mouse by ethyinitrosourea. Proceedings of the National Academy of Sciences, USA 78, 31383141.
Jurgens, G., Wieschaus, E., Nussleinn-Volhard, C. & Kluding, H. (1984). Mutations affecting the pattern of the larval cuticle inDrosophila melanogaster. II. Zygotic loci on the third chromosome. Roux's Archives of Cellularity Biology 193, 283295.
Kimmel, C. B., Kane, D. A., Walker, C, Warga, R. M. & Rothman, M. B. (1989). A mutation that changes cell movement and cell fate in the zebrafish embryo. Nature 337, 358362.
King, T. R., Dove, W. F., Herrmann, B., Moser, A. R. & Shedlovsky, A. (1989). Mapping to molecular resolution in the T to H-2 region of the mouse genome with a nested set of meiotic recombinants. Proceedings of the National Academy of Sciences, USA 86, 222226.
Lee, K., Gold, B. & Mirvish, S. S. (1977). Mutagenicity of 22 N-nitrosamides and related compounds for Salmonella typhimurium TA1535. Mutation Research 48, 131138.
Loveless, A. & Hampton, C. L. (1969). Inactivation and mutation of coliphage T2 by N-methyl and N-ethyl-N-nitrosourea. Mutation Research 7, 112.
Moser, A. R., Pitot, H. C. & Dove, W. F. (1990). A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322324.
Muller, H. J. & Altenberg, E. (1919). The rate of change of hereditary factors in Drosophila. Proceedings of the Society of Experimental Biology and Medicine 17, 1014.
Nusslein-Volhard, C, Wieschaus, E. & Kluding, H. (1984). Mutations affecting the pattern of the larval cuticle inDrosophila melanogaster. I. Zygotic loci on the second chromosome. Roux's Archives of Cellularity Biology 193, 267282.
Pastnik, A., Vreeken, C, Nivard, M. J. M., Searles, L. L. & Vogel, E. W. (1989). Sequence analysis of A^-ethyl-A^-nitrosourea-induced vermilion mutations inDrosophila melanogaster. Genetics 123, 123129.
Richardson, K. K., Richardson, F. C, Crosby, R. M., Swenberg, J. A. & Skopek, T. R. (1987). DNA base changes and alkylation following in vivo exposure of Escherichia coli to N-methyl-N-nitrosourea or N-ethyl-N-nitrosourea. Proceedings of the National Academy of Sciences, USA 84, 344348.
Russell, W. L., Kelly, E. M., Hunsicker, P. R., Bangham, J. W., Maddux, S. C. & Phipps, E. L. (1979). Specificlocus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proceedings of the National Academy of Sciences, USA 76, 58185819.
Shedlovsky, A., King, T. R. & Dove, W. F. (1988). Saturation germ line mutagenesis of the murine / region including a lethal allele at the quaking locus. Proceedings of the National Academy of Sciences, USA 85, 180184.
Streisinger, G., Walker, C, Dower, N., Knauber, D. & Singer, F. (1981). Production of clones of homozygous diploid zebrafish (Brachydanio rerio). Nature (London) 291, 293296.
Streisinger, G., Singer, F., Walker, C, Knauber, D. & Dower, N. (1986). Segregation analyses and genecentromere distances in zebrafish. Genetics 112, 311319.
Streisinger, G., Coale, F., Taggart, C, Walker, C. & Grunwald, D. J. (1989). Clonal origins of cells in the pigmented retina of the zebrafish eye. Cellularity Biology 131, 6069.
Walker, C. & Streisinger, G. (1983). Induction of mutations by y-rays in pregonial germ cells of zebrafish embryos. Genetics 103, 125136.
Wieschaus, E., Nusslein-Volhard, C. & Jurgens, G. (1984). Mutations affecting the pattern of the larval cuticle inDrosophila melanogaster. III. Zygotic loci on the Xchromosome and fourth chromosome. Roux's Archives of Cellularity Biology 193, 296307.
Wood, W. B. (1988). The Nematode Caenorhabditis elegans. Cold Spring Harbour, New York: Cold Spring Harbour Laboratory.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Genetics Research
  • ISSN: 0016-6723
  • EISSN: 1469-5073
  • URL: /core/journals/genetics-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed