Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 31
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Craddock, Elysse M. Gall, Joseph G. and Jonas, Mark 2016. Hawaiian Drosophila genomes: size variation and evolutionary expansions. Genetica, Vol. 144, Issue. 1, p. 107.

    Levine, Mia T. Vander Wende, Helen M. Hsieh, Emily Baker, EmilyClare P. and Malik, Harmit S. 2016. Recurrent Gene Duplication Diversifies Genome Defense Repertoire in Drosophila. Molecular Biology and Evolution, Vol. 33, Issue. 7, p. 1641.

    Mezzasalma, M. Visone, V. Petraccioli, A. Odierna, G. Capriglione, T. and Guarino, F. M. 2016. Non-random accumulation of LINE1-like sequences on differentiated snake W chromosomes. Journal of Zoology,

    Barrón, Maite G. Fiston-Lavier, Anna-Sophie Petrov, Dmitri A. and González, Josefa 2014. Population Genomics of Transposable Elements inDrosophila. Annual Review of Genetics, Vol. 48, Issue. 1, p. 561.

    Charlesworth, Brian and Campos, José L. 2014. The Relations Between Recombination Rate and Patterns of Molecular Variation and Evolution inDrosophila. Annual Review of Genetics, Vol. 48, Issue. 1, p. 383.

    Cridland, J. M. Macdonald, S. J. Long, A. D. and Thornton, K. R. 2013. Abundance and Distribution of Transposable Elements in Two Drosophila QTL Mapping Resources. Molecular Biology and Evolution, Vol. 30, Issue. 10, p. 2311.

    Tollis, M. and Boissinot, S. 2013. Lizards and LINEs: Selection and Demography Affect the Fate of L1 Retrotransposons in the Genome of the Green Anole (Anolis carolinensis). Genome Biology and Evolution, Vol. 5, Issue. 9, p. 1754.

    Lorite, Pedro Maside, Xulio Sanllorente, Olivia Torres, María I. Periquet, Georges and Palomeque, Teresa 2012. The ant genomes have been invaded by several types of mariner transposable elements. Naturwissenschaften, Vol. 99, Issue. 12, p. 1007.

    Yang, Guojun Wong, Amy and Rooke, Rebecca 2012. ATon, abundant novel nonautonomous mobile genetic elements in yellow fever mosquito (Aedes aegypti). BMC Genomics, Vol. 13, Issue. 1, p. 283.

    Fiston-Lavier, A.-S. Carrigan, M. Petrov, D. A. and Gonzalez, J. 2011. T-lex: a program for fast and accurate assessment of transposable element presence using next-generation sequencing data. Nucleic Acids Research, Vol. 39, Issue. 6, p. e36.

    Díaz-González, Julia Domínguez, Ana and Albornoz, Jesús 2010. Genomic distribution of retrotransposons 297, 1731, copia, mdg1 and roo in the Drosophila melanogaster species subgroup. Genetica, Vol. 138, Issue. 6, p. 579.

    De Arcanjo, Amanda Paulino Cabral-De-Mello, Diogo Cavalcanti Silva, Ana Emília Barros E. and De Moura, Rita De Cássia 2009. Cytogenetic characterization of Eurysternus caribaeus (Coleoptera: Scarabaeidae): evidence of sex-autosome fusion and diploid number reduction prior to species dispersion. Journal of Genetics, Vol. 88, Issue. 2, p. 177.

    Biémont, C 2008. Genome size evolution: Within-species variation in genome size. Heredity, Vol. 101, Issue. 4, p. 297.

    Bergman, C. M. and Bensasson, D. 2007. Recent LTR retrotransposon insertion contrasts with waves of non-LTR insertion since speciation in Drosophila melanogaster. Proceedings of the National Academy of Sciences, Vol. 104, Issue. 27, p. 11340.

    de Setta, Nathalia Costa, Ana Paula Pimentel Lopes, Fabrício Ramon van Sluys, Marie-Anne and Carareto, Cláudia Márcia Aparecida 2007. Transposon display supports transpositional activity of P elements in species of the saltans group of Drosophila. Journal of Genetics, Vol. 86, Issue. 1, p. 37.

    Junakovic, N. Fortunati, D. and Soriano, S. 2005. Fixed and unstable <i>I</i>-related transposable elements in heterochromatin of <i>Drosophila melanogaster</i>. Cytogenetic and Genome Research, Vol. 110, Issue. 1-4, p. 173.

    Zingler, N. Weichenrieder, O. and Schumann, G.G. 2005. APE-type non-LTR retrotransposons: determinants involved in target site recognition. Cytogenetic and Genome Research, Vol. 110, Issue. 1-4, p. 250.

    Gomulski, Ludvik M Torti, Cristina Murelli, Valentina Bonizzoni, Mariangela Gasperi, Giuliano and Malacrida, Anna R 2004. Medfly transposable elements: diversity, evolution, genomic impact and possible applications. Insect Biochemistry and Molecular Biology, Vol. 34, Issue. 2, p. 139.

    Bae, Young-An and Kong, Yoon 2003. Evolutionary course of CsRn1 long-terminal-repeat retrotransposon and its heterogeneous integrations into the genome of the liver fluke, Clonorchis sinensis. The Korean Journal of Parasitology, Vol. 41, Issue. 4, p. 209.

    Bartolome, C. Maside, X. and Charlesworth, B. 2002. On the Abundance and Distribution of Transposable Elements in the Genome of Drosophila melanogaster. Molecular Biology and Evolution, Vol. 19, Issue. 6, p. 926.


The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin

  • Brian Charlesworth (a1), Philippe Jarne (a1) and Stavroula Assimacopoulos (a1)
  • DOI:
  • Published online: 01 April 2009

The total genomic copy numbers of ten families of transposable elements of Drosophila melanogaster in a set of ten isogenic lines derived from a natural population were estimated by slot-blotting. The numbers of euchromatic copies of members of each family were determined for each line by in situ hybridization of element probes to polytene chromosomes. Heterochromatic numbers were estimated by subtraction of the euchromatic counts from the total numbers. There was considerable variation between element families and lines in heterochromatic abundances, and the variance between lines for many elements was much greater for the heterochromatin than for the euchromatin. The data are consistent with the view that much of the β-heterochromatin consists of sequences derived from transposable elements. They are also consistent with the hypothesis that similar evolutionary forces control element abundances in both the euchromatin and heterochromatin, although amplification of inert sequences derived from transposable elements may be in part responsible for their accumulation in heterochromatin.

Corresponding author
* Corresponding author.
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

E. V. Ananiev , V. E. Barsky , Y. V. Ilyin & M. V. Rysic (1984). The arrangement of transposable elements in the polytene chromosomes of Drosophila melanogaster. Chromosoma 90, 366377.

P. C Brown , T. D. Tlsty & R. T. Schimke (1983). Enhancement of methotrexate resistance and dihydrofolate reductase gene amplification by treatment of mouse 3T6 cells with hydroxyurea. Molecular and Cellular Biology 3, 10971107.

M. Carlson & D. L. Brutlag (1978). One of the copia genes is adjacent to satellite DNA in Drosophila melanogaster. Cell 15, 733742.

B. Charlesworth & D. Charlesworth (1985). Genetic variation in recombination in Drosophila. I. Responses to selection and preliminary genetic analysis. Heredity 54, 7184.

B. Charlesworth & C. H. Langley (1989). The population genetics of Drosophila transposable elements. Annual Review of Genetics 23, 251287.

B. Charlesworth , P. Sniegowski & W. Stephan (1994). The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215220.

P. P. Di Nocera & I. B. Dawid (1983). Interdigitated arrangement of two oligo(a)-terminated DNA sequences in Drosophila. Nucleic Acids Research 11, 54755482.

P. Dunsmuir , W. J. Brorein , M. A. Simon & G. M. Rubin (1980). Insertion of the Drosophila transposable element copia generates a 5 base pair insertion. Cell 21, 575579.

R. Ganguly , K. D. Swanson , K. Ray & R. Krishnan (1992). A Bam Hl repeat element is predominantly associated with the degenerating neo-Y chromosome of Drosophila miranda but absent in D. melanogaster genome. Proceedings of the National Academy of Sciences of the USA 89, 13401344.

J. Haigh (1978). The accumulation of deleterious genes in a population. Theoretical Population Biology 14, 251267.

A. J. Hilliker , R. Appels & A. Schalet (1980). The genetic analysis of D. melanogaster heterochromatin. Cell 21, 607619.

S. J. Kidd & D. M. Glover (1980). A DNA segment from D. melanogaster which contains five tandemly repeating units homologous to the major rDNA insertion. Cell 19, 103119.

S. C. Lakhotia & J. Jacob (1974). EM autoradiographic studies on polytene nuclei of Drosophila melanogaster. II. Organization and transcriptive activity of the chromocenter. Experimental Cell Research 86, 253263.

R. W. Levis , R. Ganesan , K. Houtchens , L. A. Tolar & F. Sheen (1993). Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75, 10831093.

D. L. Lindsley & G. G. Zimm (1992). The Genome of Drosophila melanogaster. San Diego, CA: Academic Press.

A. R. Lohe & D. L. Brutlag (1986). Multiplicity of satellite DNA sequences in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 83, 606700.

A. R. Lohe & D. L. Brutlag (1987). Adjacent satellite DNA segments in Drosophila. Structure of junctions. Journal of Molecular Biology 194, 171179.

G. L. G. Miklos & J. N. Cotsell (1990). Chromosome structure at interfaces between major chromatin types. BioEssays 12, 16.

G. L. G. Miklos , M. J. Healy , P. Pain , A. J. Howells & R. J. Russell (1984). Molecular genetic studies on the euchromatin-heterochromatin junction in the X chromosome of Drosophila melanogaster. I. A cloned entry point near to the uncoordinated (unc) locus. Chromosoma 89, 218227.

G. L. G. Miklos , M.-T. Yamamoto , J. Davies & V. Pirrotta (1988). Microcloning reveals a high, frequency of repetitive sequences characteristic of chromosome 4 and the β-heterochromatin of Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 85, 20512055.

S. Pimpinelli , S. Bonaccorsi , M. Gatti & L. Sandier (1986). The peculiar genetic organization of Drosophila heterochromatin. Trends in Genetics 2, 1720.

S. S. Potter , W. J. Brorein , P. Dunsmuir & G. M. Rubin (1979). Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17, 415427.

H. Roiha , J. R. Miller , L. C. Woods & D. M. Glover (1981). Arrangements and rearrangements of sequences flanking the two types of rDNA insertion in Drosophila melanogaster. Nature 290, 749753.

M. Steinemann & S. Steinemann (1992). Degenerating Y chromosome of Drosophila miranda: a trap for retrotransposons. Proceedings of the National Academy of Sciences of the USA 89, 75917595.

E. Strobel , P. Dunsmuir & G. M. Rubin (1979). Polymorphism in the locations of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17, 429439.

K. Valgeirsdottir , K. L. Traverse & M. L. Pardue (1990). HeT DNA: a family of mosaic repeated sequences specific for heterochromatin in Drosophila melanogaster. Proceedings of the National Academy of Sciences of the USA 87, 77988002.

C Vaury , A. Bucheton & A. Pelisson (1989). The β-heterochromatin sequences flanking the I elements are themselves defective transposable elements. Chromosoma 98, 215224.

M. Young (1979). Middle repetitive DNA: a fluid component of the Drosophila genome. Proceedings of the National Academy of Sciences of the USA 76, 62746278.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Genetics Research
  • ISSN: 0016-6723
  • EISSN: 1469-5073
  • URL: /core/journals/genetics-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *