Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-11T11:28:03.045Z Has data issue: false hasContentIssue false

Detrital zircon ages from the islands of Inousses and Psara, Aegean Sea, Greece: constraints on depositional age and provenance

Published online by Cambridge University Press:  16 September 2008

GUIDO MEINHOLD*
Affiliation:
CASP, Department of Earth Sciences, University of Cambridge, 181a Huntingdon Road, Cambridge CB3 0DH, UK
DIRK FREI
Affiliation:
Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, DK-1350 Copenhagen, Denmark
*
*Author for correspondence: guido.meinhold@casp.cam.ac.uk

Abstract

U–Pb LA–SF–ICP–MS analyses of detrital zircons from a metalitharenite on Inousses Island, Greece, gave major age groups of 310–350, 450–500, 550–700, 900–1050 and 1880–2040 Ma and minor peaks between 2600 and 2800 Ma. The youngest concordant zircon grains of 310–330 Ma indicate the maximum age of deposition to be Late Carboniferous, rather than Ordovician, as had been earlier assumed. The lack of zircon ages between 1.1 and 1.8 Ga, coupled with the occurrence of c. 2-Ga-old zircons, imply a northern Gondwana-derived source. Detrital zircons from a garnet–mica schist on Psara Island yielded a major age group of c. 295–325 Ma and only minor Early Palaeozoic and Late Neoproterozoic ages. The youngest grains around 270 Ma indicate the maximum age of deposition to be Late Permian. The Early Palaeozoic ages support a source from terranes at the southern margin of Laurussia during the Late Palaeozoic and hence clarify the palaeotectonic position of units from the eastern Aegean Sea within the Palaeotethyan realm.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, B., Reischmann, T., Poller, U. & Kostopoulos, D. 2005. Age and origin of granitic rocks of the eastern Vardar Zone, Greece: new constraints on the evolution of the Internal Hellenides. Journal of the Geological Society, London 162, 857–70.CrossRefGoogle Scholar
Anders, B., Reischmann, T., Kostopoulos, D. & Poller, U. 2006. The oldest rocks of Greece: first evidence for a Precambrian terrane within the Pelagonian Zone. Geological Magazine 143, 4158.CrossRefGoogle Scholar
Anders, B., Reischmann, T. & Kostopoulos, D. 2007. Zircon geochronology of basement rocks from the Pelagonian Zone, Greece: constraints on the pre-Alpine evolution of the westernmost Internal Hellenides. International Journal of Earth Sciences 96, 639–61.CrossRefGoogle Scholar
Besenecker, H., Dürr, S., Herget, G., Jacobshagen, V., Kauffmann, G., Lüdtke, G., Roth, W. & Tietze, K. W. 1968. Geologie von Chios (Ägäis). Geologica et Palaeontologica 2, 121–50.Google Scholar
Cornelius, N. K., Reischmann, T., Frei, D. & Kostopoulos, D. 2007. Geochronology, geochemistry and isotopes of orthogneisses from the Greek Rhodope. Geochimica et Cosmochimica Acta 71 (15, Supplement 1), A190.Google Scholar
Dürr, S. & Jacobshagen, V. 1986. Ostägäische Inseln. In Geologie von Griechenland (ed. Jacobshagen, V.), pp. 169–87. Beiträge zur Regionalen Geologie der Erde no. 19. Stuttgart: Gebrüder Borntraeger.Google Scholar
Engel, M. & Reischmann, T. 1998. Single zircon geochronology of orthogneisses from Paros, Greece. Bulletin of the Geological Society of Greece 32, 91–9.Google Scholar
Fedo, C. M., Sircombe, K. N. & Rainbird, R. H. 2003. Detrital zircon analysis of the sedimentary record. In Zircon (eds Hanchar, J. M. & Hoskin, P. O.), pp. 277303. Reviews in Mineralogy & Geochemistry no. 53. Chantilly: Mineralogical Society of America and The Geochemical Society.CrossRefGoogle Scholar
Frei, D., Hollis, J. A., Gerdes, A., Harlov, D., Karlsson, C., Vasquez, P., Franz, G., Johansson, L. & Knudsen, C. 2006. Advanced in-situ trace element and geochronological microanalysis of geomaterials by laser ablation techniques. Geological Survey of Denmark and Greenland Bulletin 10, 25–8.CrossRefGoogle Scholar
Gerdes, A. & Zeh, A. 2006. Combined U–Pb and Hf isotope LA–(MC)–ICP–MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters 249, 4761.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. G., Smith, A. G. 2004. A Geologic Time Scale 2004. Cambridge: Cambridge University Press, 610 pp.CrossRefGoogle Scholar
Himmerkus, F., Reischmann, T. & Kostopoulos, D. 2006. Late Proterozoic and Silurian basement units within the Serbo-Macedonian Massif, northern Greece: the significance of terrane accretion in the Hellenides. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, A. H. F. & Mountrakis, D.), pp. 3550. London: Geological Society of London Special Publication no. 260.Google Scholar
Himmerkus, F., Anders, B., Reischmann, T. & Kostopoulos, D. 2007. Gondwana-derived terranes in the northern Hellenides. In 4-D Framework of Continental Crust (eds Hatcher, Jr, R. D., Carlson, M. P., McBride, J. H. & Martínez Catalán, J. R.), pp. 379–90. Boulder: Geological Society of America Memoir no. 200.CrossRefGoogle Scholar
Jacobshagen, V. 1986. Geologie von Griechenland. Beiträge zur Regionalen Geologie der Erde no. 19. Stuttgart: Gebrüder Borntraeger, 363 pp.Google Scholar
Kilias, A. 1987. Die Phyllit-Schiefer-Serie der Insel Oinousai: Mikrostrukturen, Kinematik und tektonische Stellung im Helleniden Orogen (Griechenland). Geologica Balcanica 17, 8390.Google Scholar
Kozur, H. 1998. The age of the siliciclastic series (Karareis Formation) of the western Karaburun Peninsula, western Turkey. In Proceedings of the Sixth European Conodont Symposium (ECOS VI) (ed. Szaniawski, H.), pp. 171–89. Palaeontologia Polonica no. 58. Warszawa: Institute of Palaeobiology, Polish Academy of Sciences.Google Scholar
Ludwig, K. R. 2003. Isoplot/Ex 3.00. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publications no. 4.Google Scholar
Meinhold, G. 2007. Sedimentary rocks of the Internal Hellenides, Greece: age, source, and depositional setting. Published Ph.D. thesis, Johannes-Gutenberg Universität, Mainz, Germany.Google Scholar
Meinhold, G., Kostopoulos, D. & Reischmann, T. 2007. Geochemical constraints on the provenance and depositional setting of sedimentary rocks from the islands of Chios, Inousses and Psara, Aegean Sea, Greece: implications for the evolution of Palaeotethys. Journal of the Geological Society, London 164, 1145–63.CrossRefGoogle Scholar
Meinhold, G., Reischmann, T., Kostopoulos, D., Lehnert, O., Matukov, D. & Sergeev, S. 2008. Provenance of sediments during subduction of Palaeotethys: detrital zircon ages and olistolith analysis in Palaeozoic sediments from Chios Island, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 263, 7191.CrossRefGoogle Scholar
Mountrakis, D., Sapountzis, E., Kilias, A., Eleftheriadis, G. & Christofides, G. 1983. Paleogeographic conditions in the western Pelagonian margin in Greece during the initial rifting of the continental area. Canadian Journal of Earth Sciences 20, 1673–81.CrossRefGoogle Scholar
Okay, A. I., Satir, M. & Siebel, W. 2006. Pre-Alpine Palaeozoic and Mesozoic orogenic events in the Eastern Mediterranean region. In European Lithosphere Dynamics (eds Gee, D. & Stephenson, R.), pp. 389–05. London: Geological Society of London Memoir no. 32.Google Scholar
Özmen, F. & Reischmann, T. 1999. The age of the Sakarya continent in W Anatolia: implications for the evolution of the Aegean region. Journal of Conference Abstracts 4, 805.Google Scholar
Reischmann, T., Kostopoulos, D., Loos, S., Anders, B., Avgerinas, A. & Sklavounos, S. 2001. Late Palaeozoic magmatism in the basement rocks southwest of Mt. Olympos, Central Pelagonian Zone, Greece: Remnants of a Permo-Carboniferous Magmatic Arc. Bulletin of the Geological Society of Greece 34, 985–93.CrossRefGoogle Scholar
Sircombe, K. N. 2004. AgeDisplay: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distributions. Computers & Geosciences 30, 2131.CrossRefGoogle Scholar
Stampfli, G. M. & Borel, G. D. 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth and Planetary Science Letters 196, 1733.CrossRefGoogle Scholar
Titorenkova, R., Macheva, L., Zidarov, N., von Quadt, A. & Peytcheva, I. 2003. Metagranites from SW Bulgaria as a part of the Neoproterozoic to early Paleozoic system in Europe: New insight from zircon typology, U–Pb isotope data and Hf-tracing. Geophysical Research Abstracts 5, 08963.Google Scholar
Turpaud, P. 2006. Characterization of igneous terranes by zircon dating: implications for the UHP relicts occurrences and suture identification in the Central Rhodope, Northern Greece. Published Ph.D. thesis, Johannes-Gutenberg Universität, Mainz, Germany.Google Scholar
Vavassis, I., De Bono, A., Stampfli, G. M., Giorgis, D., Valloton, A. & Amelin, Y. 2000. U–Pb and Ar–Ar geochronological data from the Pelagonian Basement in Evia (Greece): geodynamic implications for the evolution of Paleotethys. Schweizerische Mineralogische und Petrographische Mitteilungen 80, 2143.Google Scholar
Vermeesch, P. 2004. How many grains are needed for a provenance study? Earth and Planetary Science Letters 224, 441–51.CrossRefGoogle Scholar
Supplementary material: File

Meinhold Supplementary Material

Appendix Table1.doc

Download Meinhold Supplementary Material(File)
File 164.9 KB
Supplementary material: File

Meinhold Supplementary Material

Appendix Table 2.doc

Download Meinhold Supplementary Material(File)
File 115.7 KB