Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T08:55:48.978Z Has data issue: false hasContentIssue false

Dinosaur footprints in the Early Jurassic of Patagonia (Marifil Volcanic Complex, Argentina): biochronological and palaeobiogeographical inferences

Published online by Cambridge University Press:  10 April 2017

IGNACIO DÍAZ-MARTÍNEZ*
Affiliation:
CONICET – Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Av. Roca 1242, General Roca (8332), Río Negro, Argentina
SANTIAGO N. GONZÁLEZ
Affiliation:
CONICET – Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Av. Roca 1242, General Roca (8332), Río Negro, Argentina
SILVINA DE VALAIS
Affiliation:
CONICET – Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro, Av. Roca 1242, General Roca (8332), Río Negro, Argentina
*
Author for correspondence: inaportu@hotmail.es

Abstract

A new dinosaurian track-bearing site, with tridactyl footprints from the Lower Jurassic (pre-middle Pliensbachian) volcanogenic and epiclastic rocks of the Marifil Volcanic Complex, Patagonia, Argentina, is presented and described. The best-preserved footprint, classified as cf. Anomoepus, confirms the utility of the Anomoepus-like tracks for the Early Jurassic biochronology. Palaeobiogeographically, this record supports the idea that the South American Early Jurassic dinosaur fauna presents elements of Pangaean distribution, and others with Gondwanan relationships with prevalent southern African affinities. Dinosaur records from South America between the Rhaetian and the Pliensbachian are very scarce, and this find contributes to the knowledge of early radiation and evolution of Dinosauria.

Type
Rapid Communication
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apaldetti, C., Martínez, R. N., Alcober, O. A. & Pol, D. 2011. A new basal sauropodomorph (Dinosauria: Saurischia) from Quebrada del Barro Formation (Marayes-El Carrizal Basin), northwestern Argentina. PLoS ONE, published online 9 November 2011. doi: 10.1371/journal.pone.0026964.Google Scholar
Archangelsky, S. 1990. Plant distribution in Gondwana during the Late Paleozoic. In Antarctic Paleobiology: Its Role in the Reconstruction of Gondwana (eds Taylor, T. N. & Taylor, E.), pp. 102–17. Berlin: Springer-Verlag.Google Scholar
Arcucci, A. B., Marsicano, C. A. & Caselli, A. T. 2004. Tetrapod association and palaeoenvironment of the Los Colorados Formation (Argentina): a significant sample from Western Gondwana at the end of the Triassic. Geobios 37, 557–68.Google Scholar
Artabe, A. E., Morel, E. M. & Spalletti, L. A. 2003.Caracterización de las provincias fitogeográficas triásicas del Gondwana extratropical. Ameghiniana 40, 387405.Google Scholar
Avanzini, M., Gierliński, G. & Leonardi, G. 2001. First report of sitting Anomoepus tracks in European Lower Jurassic (Lavini di Marco site – northern Italy). Rivista Italiana di Paleontologia e Stratigrafia 107, 131–6.Google Scholar
Báez, A. M. & Marsicano, C. A. 2001. A heterodontosaurid ornithischian dinosaur from the Upper Triassic of Patagonia. Ameghiniana 38, 271–9.Google Scholar
Baird, D. 1964. Dockum (Late Triassic) reptile footprints from New Mexico. Journal of Paleontology 38, 118–25.Google Scholar
Barrett, P. M., Butler, R. J., Moore-Fay, S. C., Novas, F. E., Moody, J. M., Clark, J. M. & Sánchez-Villagra, M. R. 2008. Dinosaur remains from the La Quinta Formation (Lower or Middle Jurassic) of the Venezuelan Andes. Paläontologische Zeitschrift 82, 163–77.Google Scholar
Barrett, P. M., Butler, R. J., Mundil, R., Scheyer, T. M., Irmis, R. B. & Sánchez-Villagra, M. R. 2014. A palaeoequatorial ornithischian and new constraints on early dinosaur diversification. Proceedings of the Royal Society of London B, published online 6 August 2014. doi: 10.1098/rspb.2014.1147.Google ScholarPubMed
Becerra, M. G., Pol, D., Rauhut, O. W. & Cerda, I. A. 2016. New heterodontosaurid remains from the Cañadón Asfalto Formation: cursoriality and the functional importance of the pes in small heterodontosaurids. Journal of Paleontology 90, 555–77.Google Scholar
Belvedere, M., Dyke, G., Hadri, M. & Ishigaki, S. 2011. The oldest evidence for birds in Northern Gondwana? Small tridactyl footprints from the Middle Jurassic of Msemrir (Morocco). Gondwana Research 19, 542–9.Google Scholar
Benton, M. J. 1983. Dinosaur success in the Triassic: a noncompetitive ecological model. Quarterly Review of Biology 58, 2955.CrossRefGoogle Scholar
Bittencourt, J. S. & Langer, M. C. 2011. Mesozoic dinosaurs from Brazil and their biogeographic implications. Anais da Academia Brasileira de Ciências 83, 2360.Google Scholar
Bonaparte, J. F. 1971. Los tetrápodos del sector superior de la Formación Los Colorados, La Rioja, Argentina. Ópera Lilloana 22, 1183.Google Scholar
Bonaparte, J. F. & Vince, M. 1979. El hallazgo del primer nido de dinosaurios triásicos (Saurischia, Prosauropoda), Triásico Superior de Patagonia, Argentina. Ameghiniana 16, 173–82.Google Scholar
Brusatte, S. L., Benton, M. J., Ruta, M. & Lloyd, G. T. 2008. The first 50Myr of dinosaur evolution: macroevolutionary pattern and morphological disparity. Biology Letters 4, 733–6.Google Scholar
Brusatte, S. L., Nesbitt, S. J., Irmis, R. B., Butler, R. J., Benton, M. J. & Norell, M. A. 2010. The origin and early radiation of dinosaurs. Earth Science Reviews 101, 68100.Google Scholar
Casamiquela, R. M. 1964. Estudios icnológicos: problemas y métodos de la icnología con aplicación al estudio de pisadas mesozoicas (Reptilia, Mammalia) de la Patagonia. Buenos Aires: Colegio Industrial Pío IX, 229 pp.Google Scholar
Colombi, C. E., Santi Malnis, P., Correa, G. A., Martínez, R. N., Fernández, E., Abelín, D., Praderio, A., Apaldetti, C. G., Alcober, O. & Drovandi, J. 2015. La formación Balde de Leyes, una nueva unidad estratigráfica de la cuenca triásica de Marayes – El Carrizal. Revista de la Asociación Geológica Argentina 72, 445–55.Google Scholar
Coria, R. A. & Salgado, L. 1995. A new giant carnivorous dinosaur from the Cretaceous of Patagonia. Nature 377, 224–6.Google Scholar
Cortés, J. M. 1981. El sustrato precretácico del extremo nordeste de la provincia del Chubut. Revista de la Asociación Geológica Argentina 36, 217–35.Google Scholar
Cúneo, R., Ramezani, J., Scasso, R., Pol, D., Escapa, I., Zavattieri, A. M. & Bowring, S. A. 2013. High-precision U–Pb geochronology and a new chronostrat-igraphy for the Cañadón Asfalto Basin, Chubut, central Patagonia: implications for terrestrial faunal and floral evolution in Jurassic. Gondwana Research 24, 1267–75.Google Scholar
Dalman, S. G. & Weems, R. E. 2013. A new look at morphological variation in the ichnogenus Anomoepus, with special reference to material from the Lower Jurassic Newark Supergroup: implications for ichnotaxonomy and ichnodiversity. Bulletin of the Peabody Museum of Natural History 54, 67124.Google Scholar
De Valais, S. 2011. Revision of dinosaur ichnotaxa from the La Matilde Formation (Middle Jurassic), Santa Cruz Province, Argentina. Ameghiniana 48, 2842.Google Scholar
Ellenberger, P. 1970. Les niveaux paléontologiques de première apparition des mammifères primordiaux en Afrique du Sud et leur ichnologie: établissement de zones stratigraphiques détaillées dans le Stormberg du Lesotho (Afrique du Sud) (Trias supérieur à Jurassique). In Proceedings and Papers of the Second Gondwana Symposium (ed. Haughton, S. H.), pp. 343–70. Pretoria: Council for Scientific and Industrial Research.Google Scholar
Elliot, D. H. & Fleming, T. H. 2000. Weddell triple junction: the principal focus of Ferrar and Karoo magmatism during initial breakup of Gondwana. Geology 28, 539–42.Google Scholar
Féraud, G., Alric, V., Fornari, M., Bertrand, H. & Haller, M. 1999. 40Ar/39Ar dating of the Jurassic volcanic province of Patagonia: migrating magmatism related to Gondwana break-up and subduction. Earth and Planetary Science Letters 172, 8396.Google Scholar
Gierliński, G. 1991. New dinosaur ichnotaxa from the Early Jurassic of the Holy Cross Mountains, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 85, 137–48.Google Scholar
Gierliński, G. 1999. Tracks of a large thyreophoran dinosaur from the Early Jurassic of Poland. Acta Palaeontologica Polonica 44, 231–4.Google Scholar
Golonka, J. 2007. Late Triassic and Early Jurassic palaeogeography of the world. Palaeogeography, Palaeoclimatology, Palaeoecology 244, 297307.Google Scholar
Harris, J. D. 1997. Four-toed theropod footprints and a paleomagnetic age from the Whetstone Falls Member of the Harebell Formation (Upper Cretaceous: Maastrichtian), northwestern Wyoming: a correction: Cretaceous Research 18, 139.Google Scholar
Haubold, H. 1971. Ichnia amphibiorum et reptiliorum fossilium. Monticello, NY: Lubrecht & Cramer, 128 pp.Google Scholar
Haubold, H. 1986. Archosaur footprints at the terrestrial Triassic–Jurassic transition. In The Beginning of the Age of Dinosaurs: Faunal Change across the Triassic-Jurassic Boundary (ed. Padian, K.), pp. 189201. Cambridge: Cambridge University Press.Google Scholar
Hitchcock, E. 1845. An attempt to name, classify, and describe the animals that made the fossil footmarks of New England. Proceedings of the Association of American Geologists and Naturalists 6, 23–5.Google Scholar
Hitchcock, E. 1848. An attempt to discriminate and describe the animals that made the fossil footmarks of the United States, and especially of New England. Memoirs of the American Academy of Arts and Sciences 3, 129256.CrossRefGoogle Scholar
Hitchcock, E. 1858. Ichnology of New England: A Report on the Sandstone of the Connecticut Valley especially its Fossil Footmarks made to the Government of the Commonwealth of Massachusetts. Boston, MA: W. White, 220 pp.Google Scholar
Kent, D. V., Malnis, P. S., Colombi, C. E., Alcober, O. A. & Martínez, R. N. 2014. Age constraints on the dispersal of dinosaurs in the Late Triassic from magnetochronology of the Los Colorados Formation (Argentina). Proceedings of the National Academy of Sciences 111, 7958–63.Google Scholar
Knoll, F. 2005. The tetrapod fauna of the Upper Elliot and Clarens formations in the main Karoo Basin (South Africa and Lesotho). Bulletin de la Société Géologique de France 176, 8191.Google Scholar
Langer, M. C. 2005. Studies on continental Late Triassic tetrapod biochronology. II. The Ischigualastian and a Carnian global correlation. Journal of South American Earth Sciences 19, 219–39.CrossRefGoogle Scholar
Langer, M. C. & Ferigolo, J. 2013. The Late Triassic dinosauromorph Sacisaurus agudoensis (Caturrita Formation; Rio Grande do Sul, Brazil): anatomy and affinities. In Anatomy, Phylogeny and Palaeobiology of Early Archosaurs and their Kin (eds Nesbitt, S. J., Desojo, J. B. & Irmis, R. B.), pp. 353–92. Geological Society of London, Special Publication no. 379.Google Scholar
Langer, M. C., Rincón, A. D., Ramezani, J., Solórzano, A. & Rauhut, O. W. 2014. New dinosaur (Theropoda, stem-Averostra) from the earliest Jurassic of the La Quinta formation, Venezuelan Andes. Royal Society Open Science, published online 8 October 2014. doi: 10.1098/rsos.140184.Google Scholar
Leonardi, G. 1987. Glossary and Manual of Tetrapod Palaeoichnology. Brasilia: Departamento Nacional da Produção Mineral, Brasil, 115 pp.Google Scholar
Li, J. J., Lockley, M. G., Zhang, Y., Hu, S., Matsukawa, M. & Bai, Z. 2012. An important ornithischian track-site in the Early Jurassic of the Shenmu region, Shaanxi, China. Acta Geologica Sinica (English Edition) 86, 110.Google Scholar
Lockley, M. G. 2009. New perspectives on morphological variation in tridactyl footprints: clues to widespread convergence in developmental dynamics. Geological Quarterly 53, 415–32.Google Scholar
Lockley, M. G. & Gierliński, G. D. 2006. Diverse vertebrate ichnofaunas containing Anomoepus and other unusual trace fossils from the Lower Jurassic of the western United States: implications for paleoecology palichnostratigraphy. New Mexico Museum of Natural History and Science, Bulletin 37, 176–91.Google Scholar
Lockley, M. G., dos Santos, V. F., Meyer, C. & Hunt, A. P. 1998. A new dinosaur tracksite in the Morrison Formation, Boundary Butte, Southeastern Utah. Modern Geology 23, 317–30.Google Scholar
Lockley, M. G., Jianjun, L., Rihui, L., Matsukawa, M., Harris, J. D., & Lida, X. 2013. A review of the tetrapod track record in China, with special reference to type ichnospecies: implications for ichnotaxonomy and paleobiology. Acta Geologica Sinica (English Edition) 87, 120.CrossRefGoogle Scholar
Lockley, M. G. & Matsukawa, M. 2009. A review of vertebrate track distributions in East and Southeast Asia. Journal of the Paleontological Society of Korea 25, 1742.Google Scholar
Lockley, M. G, & Xing, L. 2015. Flattened fossil footprints: implications for paleobiology. Palaeogeography, Palaeoclimatology, Palaeoecology 426, 8594.Google Scholar
Lucas, S. G. 2007. Tetrapod footprint biostratigraphy and biochronology. Ichnos 14, 538.Google Scholar
Lull, R. S. 1904. Fossil footprints of the Jura-Trias of north America. Memoirs of the Boston Society of Natural History 5, 461557.Google Scholar
Mallison, H. & Wings, O. 2014. Photogrammetry in paleontology: a practical guide. Journal of Paleontological Techniques 12, 131.Google Scholar
Martínez, R. N. 2009. Adeopapposaurus mognai, gen. et sp. nov. (Dinosauria: Sauropodomorpha), with comments on adaptations of basal Sauropodomorpha. Journal of Vertebrate Paleontology 29, 142–64.Google Scholar
Niedźwiedzki, G. 2011. A Late Triassic dinosaur-dominated ichnofauna from the Tomanová Formation of the Tatra Mountains, Central Europe. Acta Palaeontologica Polonica 56, 291300.CrossRefGoogle Scholar
Novas, F. E. 2009. The Age of Dinosaurs in South America. Bloomington, IN: Indiana University Press, 452 pp.Google Scholar
Olsen, P. E. & Galton, P. M. 1984. A review of the reptile and amphibian assemblages from the Stormberg of southern Africa, with special emphasis on the footprints and the age of the Stormberg. Palaeontologia Africana 25, 87110.Google Scholar
Olsen, P. E. & Rainforth, E. C. 2003. The Early Jurassic Ornithischian Dinosaurian Ichnogenus Anomoepus . In The Great Rift Valleys of Pangea in Eastern North America (eds LeTourneau, P. M. & Olsen, P. E.), pp. 314–67. New York: Columbia University Press.Google Scholar
Pankhurst, R. J., Leat, P. T., Sruoga, P., Rapela, C. W., Márquez, M., Storey, B. C. & Riley, T. R. 1998. The Chon Aike province of Patagonia and related rocks in West Antarctica: a silicic large igneous province. Journal of Volcanology and Geothermal Research 81, 113–36.Google Scholar
Pankhurst, R. J. & Rapela, C. R. 1995. Production of Jurassic rhyolite by anatexis of the lower crust of Patagonia. Earth and Planetary Science Letters 134, 2336.Google Scholar
Pankhurst, R. J., Riley, T. R., Fanning, C. M. & Kelley, S. P. 2000. Episodic silicic volcanism in Patagonia and the Antarctic Peninsula: chronology of magmatism associated with the break-up of Gondwana. Journal of Petrology 41, 605–25.Google Scholar
Pol, D., Garrido, A. & Cerda, I. A. 2011. A new sauropodomorph dinosaur from the Early Jurassic of Patagonia and the origin and evolution of the sauropod-type sacrum. PloS ONE, published online 26 January 2011. doi: 10.1371/journal.pone.0014572.Google Scholar
Pol, D. & Powell, J. E. 2007. Skull anatomy of Mussaurus patagonicus (Dinosauria: Sauropodomorpha) from the Late Triassic of Patagonia. Historical Biology 19, 125–44.Google Scholar
Pol, D. & Rauhut, O. W. M. 2012. A Middle Jurassic abelisaurid from Patagonia and the early diversification of theropod dinosaurs. Proceedings of the Royal Society B, published online 23 May 2012. doi: 10.1098/rspb.2012.0660.Google Scholar
Pol, D., Rauhut, O. W. & Becerra, M. 2011. A Middle Jurassic heterodontosaurid dinosaur from Patagonia and the evolution of heterodontosaurids. Naturwissenschaften 98, 369–79.Google Scholar
Rapela, C. W., Pankhurst, R. J., Fanning, C. M. & Herve, F. 2005. Pacific subduction coeval with the Karoo mantle plume: the Early Jurasssic Subcordilleran belt of northwestern Patagonia. In Terrane Processes at the Margins of Gondwana (eds Vaughan, A. P. M., Leat, P. T. & Pankhurst, R. J.), pp. 217–39. Geological Society of London, Special Publication no. 246.Google Scholar
Rauhut, O. W. & López-Arbarello, A. 2008. Archosaur evolution during the Jurassic: a southern perspective. Revista de la Asociación Geológica Argentina 63, 557–85.Google Scholar
Rauhut, O. W., Remes, K., Fechner, R., Cladera, G. & Puerta, P. 2005. Discovery of a short-necked sauropod dinosaur from the Late Jurassic period of Patagonia. Nature 435, 670–72.Google Scholar
Salgado, L. & Bonaparte, J. F. 1991. Un nuevo saurópodo Dicraeosauridae, Amargasurus cazaui gen. et sp. nov., de la Formación La Amarga, Neocomiano de la provincia del Neuquén, Argentina. Ameghiniana 28, 333–46.Google Scholar
Salgado, L. & Gasparini, Z. 2004. El registro más antiguo de Dinosauria en la Cuenca Neuquina (Aaleniano, Jurásico Medio). Ameghiniana 41, 505–8.Google Scholar
Sereno, P. C. 2012. Taxonomy, morphology, masticatory function and phylogeny of heterodontosaurid dinosaurs. Zookeys 226, 1225.Google Scholar
Smith, N. D. & Pol, D. 2007. Anatomy of a basal sauropodomorph dinosaur from the Early Jurassic Hanson Formation of Antarctica. Acta Palaeontologica Polonica 52, 657–74.Google Scholar
Sternberg, C. M. 1926. Dinosaur tracks from the Edmonton Formation of Alberta. Geological Survey of Canada Bulletin 44, 85–7.Google Scholar
Thulborn, T. 1990. Dinosaur Tracks. London: Chapman and Hall, 410 pp.Google Scholar
Thulborn, T. 1994. Ornithopod dinosaur tracks from the Lower Jurassic of Queensland. Alcheringa 18, 247–58.Google Scholar
Wang, B., Li, J., Bai, Z., Gao, J., Dong, S., Hu, B., Zhao, Q. & Chang, J. 2016. Research on dinosaur footprints in Zizhou, Shaanxi Province, China. Acta Geologica Sinica (English Edition) 90, 118.Google Scholar
Wilf, P., Cúneo, N. R., Escapa, I. H., Pol, D. & Woodburne, M. O. 2013. Splendid and seldom isolated: the paleobiogeography of Patagonia. Annual Review of Earth and Planetary Sciences 41, 561603.Google Scholar
Wright, J. L. 2004. Bird-like features of dinosaur footprints. In Feathered Dragons (eds Currie, P. J., Koppelhus, E. B., Shugar, M. A. & Wright, J. L.), pp. 167–81. Bloomington, IN: Indiana University Press.Google Scholar
Xing, L., Abbassi, N., Lockley, M. G., Klein, H., Jia, S., McCrea, R. T. & Persons IV, W. S. 2016a. The first record of Anomoepus tracks from the Middle Jurassic of Henan Province, Central China. Historical Biology, published online 22 February 2016. doi: 10.1080/08912963.2016.1149480.Google Scholar
Xing, L., Lockley, M. G., Tang, Y., Klein, H., Zhang, J., Persons IV, W. S. & Ye, Y. 2015. Theropod and Ornithischian footprints from the Middle Jurassic Yanan Formation of Zizhou County, Shaanxi, China. Ichnos 22, 111.Google Scholar
Xing, L., Lockley, M. G., Zhang, J., You, H., Klein, H., Persons IV, W. S., Dai, H. & Dong, Z. 2016b. First Early Jurassic Ornithischian and theropod footprint assemblage and a new ichnotaxon Shenmuichnus wangi ichnosp. nov. from Yunnan Province, southwestern China. Historical Biology 28, 721–33.CrossRefGoogle Scholar
Yates, A. M. 2003. A definite prosauropod dinosaur from the lower Elliot Formation (Norian: Upper Triassic) of South Africa. Palaeontologia Africana 39, 63–8.Google Scholar
Young, C. C. 1966. Two footprints from the Jiaoping Coal Mine of Tungchuan, Shensi. Vertebrata PalAsiatica 10, 6871.Google Scholar