Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T19:12:16.363Z Has data issue: false hasContentIssue false

The Kinzers Formation (Pennsylvania, USA): the most diverse assemblage of Cambrian Stage 4 radiodonts

Published online by Cambridge University Press:  30 July 2018

STEPHEN PATES*
Affiliation:
Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK. Institute of Earth Sciences, University of Lausanne, Lausanne CH-1015, Switzerland
ALLISON C. DALEY
Affiliation:
Institute of Earth Sciences, University of Lausanne, Lausanne CH-1015, Switzerland
*
Author for correspondence: stephen.pates@zoo.ox.ac.uk

Abstract

Radiodonta, apex Cambrian predators such as Anomalocaris have been known from the Kinzers Formation (Cambrian Series 2, Stage 4 – Pennsylvania, USA) for nearly 100 years. Work over the last ten years, mainly on radiodont material from the Chengjiang (Cambrian Series 2, Stage 3 – Yunnan, China) and Burgess Shale (Miaolingian, Wuliuan – British Columbia, Canada), has greatly improved our knowledge of the diversity and disparity of radiodonts and their frontal appendages, including the description of new species, genera and families. Previous work identified two species of radiodonts from the Kinzers Formation: Anomalocaris pennsylvanica Resser, 1929 and Anomalocaris? cf. pennsylvanica based on isolated frontal appendage material (Briggs, 1979). A restudy of Kinzers Formation material shows that only some of the specimens can be confirmed as Anomalocaris pennsylvanica, and a number of specimens previously attributed to Anomalocaris in fact belong to other more recently discovered radiodont genera Amplectobelua and Tamisiocaris. This reinterpretation makes the Kinzers Formation the most diverse Cambrian Stage 4 Burgess Shale Type Lagerstätten in terms of number of radiodont species. This assemblage includes the youngest known Tamisiocaris and the first from outside Greenland, the only Amplectobelua from Stage 4 and the oldest from Laurentia, two specimens tentatively assigned to the recently described Chengjiang genus Laminacaris, and the endemic Anomalocaris pennsylvanica. The identification of these new radiodont taxa increases the total known diversity of the Kinzers Formation to more than ten species, and so it should now be considered a Tier 2 Lagerstätte.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. A. & Briggs, D. E. G. 1993. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21, 527–30.2.3.CO;2>CrossRefGoogle Scholar
Briggs, D. E. G. 1978. A new trilobite-like arthropod from the Lower Cambrian Kinzers Formation, Pennsylvania. Journal of Paleontology 52, 132–40.Google Scholar
Briggs, D. E. G. 1979. Anomalocaris, the largest known Cambrian arthropod. Palaeontology 22, 631–64.Google Scholar
Briggs, D. E. G., Lieberman, B. S., Hendricks, J. R., Halgedahl, S. L. & Jarrard, R. D. 2008, Middle Cambrian arthropods from Utah. Journal of Paleontology 82, 238–54.CrossRefGoogle Scholar
Briggs, D. E. G. & Mount, J. D. 1982. The occurrence of the giant arthropod Anomalocaris in the Lower Cambrian of southern California, and the overall distribution of the genus. Journal of Paleontology 56, 1112–18.Google Scholar
Campbell, L. & Kauffman, M. E. 1969. Olenellus fauna of the Kinzers Formation, southeastern Pennsylvania. Proceedings of the Pennsylvania Academy of Science 43, 172–6.Google Scholar
Chen, J., Ramsköld, L. & Zhou, G. 1994. Evidence for monophyly and arthropod affinity of Cambrian giant predators. Science 264, 1304–8.CrossRefGoogle ScholarPubMed
Chlupáč, I. & Kordule, V. 2002. Arthropods of Burgess Shale type from the Middle Cambrian of Bohemia (Czech Republic). Bulletin of the Czech Geological Survey 77, 167–82.Google Scholar
Collins, D. 1996. The “evolution” of Anomalocaris and its classification in the arthropod class Dinocarida (nov.) and order Radiodonta (nov.). Journal of Paleontology 70, 280–93.CrossRefGoogle Scholar
Cong, P., Daley, A. C., Edgecombe, G. D. & Hou, X. 2017. The functional head of the Cambrian radiodontan (stem-group Euarthropoda) Amplectobelua symbrachiata. BMC Evolutionary Biology 17, 208.CrossRefGoogle ScholarPubMed
Cong, P., Daley, A. C., Edgecombe, G. D., Hou, X. & Chen, A. 2016. Morphology of the radiodontan Lyrarapax from the early Cambrian Chengjiang biota. Journal of Paleontology 90, 663–71.CrossRefGoogle Scholar
Cong, P., Edgecombe, G. D., Daley, A. C., Guo, J., Pates, S. & Hou, X. G. 2018. New radiodontans with gnathobase-like structures from the Cambrian Chengjiang Biota and implications for the systematics of Radiodonta. Papers in Palaeontology. doi: 10.1002/spp2.1219.CrossRefGoogle Scholar
Cong, P., Ma, X., Hou, X., Edgecombe, G. D. & Strausfield, N. J. 2014. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature 513, 538–42.CrossRefGoogle ScholarPubMed
Conway Morris, S. 1977. Fossil priapulid worms. Special Papers in Palaeontology 20, 1155.Google Scholar
Daley, A. C. & Budd, G. E. 2010. New anomalocaridid appendages from the Burgess Shale, Canada. Palaeontology 53, 721–38.CrossRefGoogle Scholar
Daley, A. C., Budd, G. E., & Caron, J. B. 2013a. Morphology and systematics of the anomalocaridid arthropod Hurdia from the Middle Cambrian of British Columbia and Utah. Journal of Systematic Palaeontology 11, 743–87.CrossRefGoogle Scholar
Daley, A. C., Budd, G. E., Caron, J. B., Edgecombe, G. D. & Collins, D. 2009. The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science 323, 1597–600.CrossRefGoogle ScholarPubMed
Daley, A. C. & Legg, D. A. 2015. A morphological and taxonomic appraisal of the oldest anomalocaridid from the Lower Cambrian of Poland. Geological Magazine 152, 949–55.CrossRefGoogle Scholar
Daley, A. C., Paterson, J. R., Edgecombe, G. D., García-Bellido, D. C. & Jago, J. B. 2013b. New anatomical information on Anomalocaris from the Cambrian Emu Bay Shale of South Australia and a reassessment of its inferred predatory habits. Palaeontology 56, 971–90.Google Scholar
Daley, A. C. & Peel, J. S. 2010. A possible anomalocaridid from the Cambrian Sirius Passet lagerstätte, North Greenland. Journal of Paleontology 84, 352–5.CrossRefGoogle Scholar
Dunbar, C. O. 1925. Antennae in Olenellus getzi n. sp. American Journal of Science 52, 303–8.CrossRefGoogle Scholar
Gaines, R. R. 2014. Burgess Shale-type preservation and its distribution in space and time. Reading and writing of the fossil record: preservational pathways to exceptional fossilization. Paleontological Society Papers 20, 123–46.CrossRefGoogle Scholar
García-Bellido, D. & Conway Morris, S. 1999. New fossil worms from the Lower Cambrian of the Kinzers Formation, Pennsylvania, with some comments on Burgess Shale-type preservation. Journal of Paleontology 73, 394402.Google Scholar
Guo, J., Pates, S., Cong, P., Daley, A. C., Edgecombe, G. D., Chen, T., & Hou, X. G. In press. A new radiodont (stem Euarthropoda) frontal appendage with a mosaic of characters from the Cambrian (Series 2 Stage 3) Chengjiang biota. Papers in Palaeontology, doi: 10.1002/spp2.1231.CrossRefGoogle Scholar
Hou, X. G., Bergström, J. & Ahlberg, P. 1995. Anomalocaris and other large animals in the Lower Cambrian Chengjiang fauna of southwest China. GFF 117, 163–83.Google Scholar
Kühl, G., Briggs, D. E. G. & Rust, J. 2009. A great appendage arthropod with a radial mouth from the Lower Devonian Hunsrück Slate, Germany. Science 323, 771–3.CrossRefGoogle ScholarPubMed
Lankester, E. R. 1904. The structure and classification of Arthropoda. Quarterly Journal of Microscopical Science 47, 523–82.Google Scholar
Lerosey-Aubril, R., Hegna, T. A., Babcock, L. E., Bonino, E. & Kier, C. 2014. Arthropod appendages from the Weeks Formation Konservat-Lagerstätte: new occurrences of anomalocaridids in the Cambrian of Utah, USA. Bulletin of Geosciences 89, 269–82.CrossRefGoogle Scholar
Lieberman, B. S. 2003. A new soft-bodied fauna: the Pioche Formation of Nevada. Journal of Paleontology 77, 674–90.CrossRefGoogle Scholar
Liu, Q. 2013. The first discovery of anomalocaridid appendages from the Balang Formation (Cambrian Series 2) in Hunan, China. Alcheringa 37, 16.Google Scholar
Liu, J., Lerosey-Aubril, R., Steiner, M., Dunlop, J. A., Shu, D. & Paterson, J. R. 2018. Origin of raptorial feeding in juvenile Euarthropods revealed by a Cambrian radiodontan. National Science Review nwy057. doi: 10.1093/nsr/new057.CrossRefGoogle Scholar
Nedin, C. 1995. The Emu Bay Shale, a Lower Cambrian fossil Lagerstätten, Kangaroo Island. Memoirs of the Association of Australasian Palaeontologists 18, 133–41.Google Scholar
Pates, S. & Daley, A. C. 2017. Caryosyntrips: a radiodontan from the Cambrian of Spain, USA and Canada. Papers in Palaeontology 3, 461–70.CrossRefGoogle Scholar
Pates, S., Daley, A. C. & Lieberman, B. S. 2018a. Hurdiid radiodontans from the middle Cambrian (Series 3) of Utah. Journal of Paleontology 92, 99113.CrossRefGoogle Scholar
Pates, S., Daley, A. C. & Ortega-Hernández, J. 2017. Aysheaia prolata from the Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris. Acta Palaeontologica Polonica 62, 619–25.CrossRefGoogle Scholar
Pates, S., Daley, A. C. & Ortega-Hernández, J. 2018b. Response to comment “Aysheaia prolata from the Wheeler Formation (Drumian, Cambrian) is a frontal appendage of the radiodontan Stanleycaris” with the formal description of Stanleycaris. Acta Palaeontologica Polonica 63, 105–10.CrossRefGoogle Scholar
Raymond, P. E. 1935. Leanchoilia and other mid-Cambrian Arthropoda. Bulletin of the Museum of Comparative Zoology at Harvard College 76, 205–30.Google Scholar
Resser, C. E. 1929. New lower and middle Cambrian Crustacea. Proceedings of the United States National Museum 76, 118.CrossRefGoogle Scholar
Resser, C. E. & Howell, B. F. 1938. Lower Cambrian Olenellus Zone of the Appalachians. Bulletin of the Geological Society of America 49, 195248.CrossRefGoogle Scholar
Rigby, J. K. 1987. Early Cambrian sponges from Vermont and Pennsylvania, the only ones described from North America. Journal of Paleontology 61, 451–61.CrossRefGoogle Scholar
Roger, J. 1953. Sous-classe des Malacostracés. In Traité de Paléontologie (ed. Piveteau, J.), pp. 309–78. Paris: Masson.Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9, 671–5.CrossRefGoogle ScholarPubMed
Scotese, C. R. 2016. PALEOMAP PaleoAtlas for GPlates and the PaleoData Plotter Program, PALEOMAP Project. www.earthbyte.org/paleomap-paleoatlas-for-gplates/.CrossRefGoogle Scholar
Skinner, E. S. 2005. Taphonomy and depositional circumstances of exceptionally preserved fossils from the Kinzers Formation (Cambrian), southeastern Pennsylvania. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 167–92.CrossRefGoogle Scholar
Vannier, J., Caron, J. B., Yuan, J. L., Briggs, D. E. G., Collins, D., Zhao, Y. L. & Zhu, M. Y. 2007. Tuzoia: morphology and lifestyle of a large bivalved arthropod of the Cambrian seas. Journal of Paleontology, 81, 445–71.CrossRefGoogle Scholar
Van Roy, P., Daley, A. C. & Briggs, D. E. G. 2015. Anomalocaridid trunk limb homology revealed by a giant filter-feeder with paired flaps. Nature 522, 7780.CrossRefGoogle ScholarPubMed
Vinther, J., Stein, M., Longrich, N. R. & Harper, D. A. 2014. A suspension-feeding anomalocarid from the Early Cambrian. Nature 507, 496–9.CrossRefGoogle ScholarPubMed
Wang, Y., Huang, D. & Hu, S. 2013. New anomalocardid frontal appendages from the Guanshan biota, eastern Yunnan. Chinese Science Bulletin 58, 3937–42.CrossRefGoogle Scholar
Whiteaves, J. F. 1892. Description of a new genus and species of phyllocarid crustacean from the Middle Cambrian of Mount Stephen, British Columbia. Canadian Record of Science 5, 205–8.Google Scholar
Whittington, H. B. & Briggs, D. E. G. 1985. The largest Cambrian animal, Anomalocaris, Burgess Shale, British Columbia. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 309, 569609.CrossRefGoogle Scholar