Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-mm7gn Total loading time: 0.497 Render date: 2022-08-13T06:58:42.688Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

The future of Earth's oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation

Published online by Cambridge University Press:  03 October 2016

JOÃO C. DUARTE*
Affiliation:
Instituto Dom Luiz, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal Departamento de Geologia, Universidade de Lisboa, Faculdade de Ciências, Campo Grande, 1749-016 Lisboa, Portugal School of Earth, Atmosphere & Environment, Monash University, Melbourne, VIC 3800, Australia
WOUTER P. SCHELLART
Affiliation:
School of Earth, Atmosphere & Environment, Monash University, Melbourne, VIC 3800, Australia Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
FILIPE M. ROSAS
Affiliation:
Instituto Dom Luiz, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal Departamento de Geologia, Universidade de Lisboa, Faculdade de Ciências, Campo Grande, 1749-016 Lisboa, Portugal
*
Author for correspondence: jdduarte@fc.ul.pt; joao.duarte@monash.edu

Abstract

Subduction initiation is a cornerstone in the edifice of plate tectonics. It marks the turning point of the Earth's Wilson cycles and ultimately the supercycles as well. In this paper, we explore the consequences of subduction zone invasion in the Atlantic Ocean, following recent discoveries at the SW Iberia margin. We discuss a buoyancy argument based on the premise that old oceanic lithosphere is unstable for supporting large basins, implying that it must be removed in subduction zones. As a consequence, we propose a new conceptual model in which both the Pacific and the Atlantic oceans close simultaneously, leading to the termination of the present Earth's supercycle and to the formation of a new supercontinent, which we name Aurica. Our new conceptual model also provides insights into supercontinent formation and destruction (supercycles) proposed for past geological times (e.g. Pangaea, Rodinia, Columbia, Kenorland).

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afonso, J. C., Ranalli, G. & Fernandez, M. 2007. Density structure and buoyancy of the oceanic lithosphere revisited. Geophysical Research Letters 34, L10302, doi: 10.1029/2007GL029515.CrossRefGoogle Scholar
Alvarez-Marron, J., Rubio, E. & Torne, M. 1997. Subduction-related structures in the North Iberian margin. Journal of Geophysical Research 102, 22497–511.CrossRefGoogle Scholar
Anderson, D. L. 1982. Hotspots, polar wander, Mesozoic convection and the geoid. Nature 297, 391–93.CrossRefGoogle Scholar
Baes, M., Govers, R. & Wortel, R. 2011. Switching between alternative responses of the lithosphere to continental collision. Geophysical Journal International 187, 1151–74.CrossRefGoogle Scholar
Barckhausen, U., Ranero, C. R., Cande, S. C., Engels, M. & Weinrebe, W. 2008. Birth of an intraoceanic spreading center. Geology 36, 767–70.CrossRefGoogle Scholar
Barker, P. F. 2001. Scotia Sea regional tectonic evolution: implications for mantle flow and palaeocirculation. Earth-Science Reviews 55, 139.CrossRefGoogle Scholar
Bradley, D. C. 2008. Passive margins through Earth history. Earth-Science Reviews 91, 126.CrossRefGoogle Scholar
Bradley, D. C. 2011. Secular trends in the geologic record and the supercontinent cycle. Earth and Planetary Science Letters 108, 1633.Google Scholar
Betts, P. G., Giles, D., Lister, G. & Frick, L. R. 2002. Evolution of the Australian lithosphere. Australian Journal of Earth Sciences 49, 661–95.CrossRefGoogle Scholar
Burov, E. & Cloetingh, S. 2010. Plume-like upper mantle instabilities drive subduction initiation. Geophysical Research Letters 37, L03309, doi: 10.1029/2009GL041535.CrossRefGoogle Scholar
Cloetingh, S., Wortel, R. & Vlaar, N. J. 1989. On the initiation of subduction zones. Pure and Applied Geophysics 129, 725.CrossRefGoogle Scholar
Cloos, M. 1993. Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geological Society of America Bulletin 105, 715–37.2.3.CO;2>CrossRefGoogle Scholar
Coira, B., Davidson, J., Mpodozis, C. & Ramos, V. 1982. Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. Earth-Science Reviews 18, 303–32.CrossRefGoogle Scholar
Collins, W. J. 2003. Slab pull, mantle convection, and Pangaean assembly and dispersal. Earth and Planetary Science Letters 205, 225–23.CrossRefGoogle Scholar
Coltice, N., Bertrand, H., Rey, P., Jourdan, F., Phillips, B. R. & Ricard, Y. 2009. Global warming of the mantle beneath continents back to the Archaean. Gondwana Research 15, 254–66.CrossRefGoogle Scholar
Coltice, N., Rolf, T., Tackley, P. J. & Labrosse, S. 2012. Dynamic causes of the relation between area and age of the ocean floor. Science 336, 335–8.CrossRefGoogle ScholarPubMed
Conrad, C. P. & Lithgow-Bertelloni, C. 2002. How mantle slabs drive plate tectonics. Science 298, 207–9.CrossRefGoogle ScholarPubMed
Conrad, C. P., Steinberger, B. & Torsvik, T. H. 2013. Stability of active mantle upwelling revealed by net characteristics of plate tectonics. Nature 498, 479–82.CrossRefGoogle ScholarPubMed
Crosby, A. G., McKenzie, D. & Sclater, J. G. 2006. The relationship between depth, age and gravity in the oceans. Geophysical Journal International 166, 443573.CrossRefGoogle Scholar
Cunha, T., Watts, A. B., Pinheiro, L. M. & Myklebust, R. 2010. Seismic and gravity anomaly evidence of large-scale compressional deformation off SW Portugal. Earth and Planetary Science Letters 293, 171–9.CrossRefGoogle Scholar
Dalziel, I. W. D., Lawver, L. A., Norton, I. A. & Gahagan, L. M. 2013. The Scotia Arc: genesis, evolution, global significance. Annual Reviews of Earth and Planetary Sciences 41, 767–93.CrossRefGoogle Scholar
Davies, G. F. & Richards, M. A. 1992. Mantle convection. Journal of Geology 100, 151206.CrossRefGoogle Scholar
Duarte, J. C., Rosas, F. M., Terrinha, P., Gutscher, M.-A., Malavieille, J., Silva, S. & Matias, L. 2011. Thrust-wrench interference tectonics in the Gulf of Cadiz (Africa-Iberia plate boundary in the North-East Atlantic): insights from analog models. Marine Geology 289, 135–49.CrossRefGoogle Scholar
Duarte, J. C., Rosas, F. M., Terrinha, P., Schellart, W. P., Boutelier, D., Gutscher, M. A. & Ribeiro, A. 2013. Are subduction zones invading the Atlantic? Evidence from the SW Iberia margin. Geology 41, 839–42.CrossRefGoogle Scholar
Duarte, J. C., Schellart, W. P. & Cruden, A. R. 2013. Three-dimensional dynamic laboratory models of subduction with an overriding plate and variable interplate rheology. Geophysical Journal International 195, 4766.CrossRefGoogle Scholar
Duarte, J. C., Schellart, W. P. & Cruden, A. R. 2015. How weak is the subduction zone interface? Geophysical Research Letters 41, 110.Google Scholar
Dymkova, D. & Gerya, T. 2013. Porous fluid flow enables oceanic subduction initiation on Earth. Geophysical Research Letters 40, 5671–76.CrossRefGoogle Scholar
Eagles, G. & Jokat, W. 2014. Tectonic reconstructions for paleobathymetry in Drake Passage. Tectonophysics 611, 2850.CrossRefGoogle Scholar
Elsasser, W. M. 1971. Sea-floor spreading as thermal convection. Journal of Geophysical Research 76, 1101.CrossRefGoogle Scholar
Fernández-Viejo, G., Pulgar, J. A., Gallastegui, J. & Quintana, L. 2012. The fossil accretionary wedge of the Bay of Biscay: critical wedge analysis on depth-migrated seismic sections and geodynamical implications. Journal of Geology 120, 315–31.CrossRefGoogle Scholar
Forsyth, D. W. & Uyeda, S. 1975. On the relative importance of the driving forces of plate motion. Geophysical Journal International 43, 163200.CrossRefGoogle Scholar
Fukao, Y. 1973. Thrust faulting at a lithospheric plate boundary, the Portugal earthquake of 1969. Earth and Planetary Science Letters 18, 205–16.CrossRefGoogle Scholar
Galindo-Zaldivar, J., Bohoyo, F., Maldonado, A., Schreider, A., Suriñach, E. & Vázquez, J. T. 2006. Propagating rift during the opening of a small oceanic basin: the Protector Basin (Scotia Arc, Antarctica). Earth and Planetary Science Letters 241, 398412.CrossRefGoogle Scholar
Geissler, W. H., Matias, L., Stich, D., Carrilho, F., Jokat, W., Monna, S., IbenBrahim, A., Mancilla, F., Gutscher, M.-A., Sallarès, V. & Zitellini, N. 2010. Focal mechanisms for sub-crustal earthquakes in the Gulf of Cadiz from a dense OBS deployment. Geophysical Research Letters 37, L18309, doi: 10.1029/2010GL044289.CrossRefGoogle Scholar
Gerya, T. V., Connolly, J. A. D. & Yuen, D. A. 2008. Why is terrestrial subduction one-sided? Geology 36, 43–6.CrossRefGoogle Scholar
Goren, L., Aharonov, E., Mulugeta, G., Koyi, H. A. & Mart, Y. 2008. Ductile deformation of passive margins: a new mechanism for subduction initiation. Journal of Geophysical Research 113, B08411, doi: 10.1029/2005JB004179.CrossRefGoogle Scholar
Gudmundsson, O. & Sambridge, M. 1998. A regionalized upper mantle (RUM) seismic model. Journal of Geophysical Research 103, 7121–36.CrossRefGoogle Scholar
Gurnis, M. 1988. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332, 695–9.CrossRefGoogle Scholar
Gurnis, M., Hall, C. & Lavier, L. 2004. Evolving force balance during incipient subduction. Geochemistry, Geophysics, Geosystems 5, Q07001, doi: 10.1029/2003GC000681.CrossRefGoogle Scholar
Gutscher, M. A., Dominguez, S., Westbrook, G. K., Le Roy, P., Rosas, F., Duarte, J. C., Terrinha, P., Miranda, J. M., Graindorge, D., Gailler, A. & Sallares, V. 2012. The Gibraltar subduction: a decade of new geophysical data. Tectonophysics 574–575, 7291.CrossRefGoogle Scholar
Gutscher, M.-A., Malod, J., Rehault, J.-P., Contrucci, I., Klingelhoefer, F., Spakman, W. & Mendes-Victor, L. 2002. Evidence for active subduction beneath Gibraltar. Geology 30, 1071–4.2.0.CO;2>CrossRefGoogle Scholar
Hoffman, P. F. 1997. In Earth Structure: An Introduction to Structural Geology and Tectonics (eds van der Pluijm, B. & Marshak, S.), pp. 459–64. New York: McGraw-Hill.Google Scholar
Kroner, A. & Cordani, U. 2003. African, southern Indian and South American cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology. Tectonophysics 375, 325–52.CrossRefGoogle Scholar
Lonergan, L. & White, N. 1997. Origin of the Betic-Rif mountain belt. Tectonics 16, 504–22.CrossRefGoogle Scholar
Lynner, C. & Long, M. D. 2013. Sub-slab seismic anisotropy and mantle flow beneath the Caribbean and Scotia subduction zones: effects of slab morphology and kinematics. Earth and Planetary Science Letters 361, 367–78.CrossRefGoogle Scholar
Magni, V., Faccenna, C., van Hunen, J. & Funiciello, F. 2014. How collision triggers backarc extension: insight into Mediterranean style of extension from 3-D numerical models. Geology 42, 511–4.CrossRefGoogle Scholar
Marques, F. O., Nikolaeva, K., Assumpção, M., Gerya, T. V., Bezerra, F. H. R., do Nascimento, A. F. & Ferreira, J. M. 2013. Testing the influence of far-field topographic forcing on subduction initiation at a passive margin. Tectonophysics 608, 517–24.CrossRefGoogle Scholar
Masson, D. G., Cartwright, J. A., Pinheiro, L. M., Whitmarsh, R. B., Beslier, M.-O. & Roeser, H. A. 1994. Compressional deformation at the ocean-continent transition in the NE Atlantic. Journal of the Geological Society, London 151, 607–13.CrossRefGoogle Scholar
McKenzie, D. P. 1977. The initiation of trenches: a finite amplitude instability. In Island Arcs, Deep Sea Trenches and Back-Arc Basins (eds Talwani, M. & Pitman, III, W. C.), pp. 5761. American Geophysical Union, Maurice Ewing Series, Washington DC, USA.CrossRefGoogle Scholar
Meert, J. G. 2012. What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent. Gondwana Research 21, 987–93.CrossRefGoogle Scholar
Mitchell, R. N., Kilian, T. M. & Evans, D. A. D. 2012. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time. Nature 482, 208–12.CrossRefGoogle ScholarPubMed
Moresi, L. N., Betts, P. G., Miller, M. S. & Cayley, R. A. 2014. The dynamics of continental accretion. Nature 508, 245–8.CrossRefGoogle ScholarPubMed
Mueller, S. & Phillips, R. J. 1991. On the initiation of subduction. Journal of Geophysical Research 96, 651–65.CrossRefGoogle Scholar
Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. 2008. Age, spreading rates and spreading symmetry of the world's ocean crust, Geochemistry, Geophysics, Geosystems 9, Q04006, doi: 10.1029/2007GC001743.CrossRefGoogle Scholar
Murphy, J. B. & Nance, R. D. 2003. Do supercontinents introvert or extrovert?: SmNd isotopic evidence. Geology 31, 873–6.CrossRefGoogle Scholar
Murphy, J. B. & Nance, R. D. 2008. The Pangea conundrum. Geology 36, 703–6.CrossRefGoogle Scholar
Murphy, J. B. & Nance, R. D. 2013. Speculations on the mechanisms for the formation and breakup of supercontinents. Geoscience Frontiers 4, 185–94.CrossRefGoogle Scholar
Nance, R. D. & Murphy, J. B. 2013. Origins of the supercontinent cycle. Geoscience Frontiers 4, 439–48.CrossRefGoogle Scholar
Nance, R. D., Murphy, J. B. & Santosh, M. 2014. The supercontinent cycle: a retrospective essay. Gondwana Research 25, 429.CrossRefGoogle Scholar
Nance, R. D., Worsley, T. R. & Moody, J. B. 1986. Post-Archean biogeochemical cycles and long-term episodicity in tectonic processes. Geology 14, 514–8.2.0.CO;2>CrossRefGoogle Scholar
Nield, T. 2007. Supercontinent. London: Granta Books, 288 pp.Google Scholar
Nikolaeva, K., Gerya, T. V. & Marques, F. O. 2010. Subduction initiation at passive margins: numerical modelling. Journal of Geophysical Research 115, B03406, doi: 10.1029/2009JB006549.CrossRefGoogle Scholar
Nikolaeva, K., Gerya, T. & Marques, F. O. 2011. Numerical analysis of subduction initiation risk along the Atlantic American passive margins. Geology 39, 463–6.CrossRefGoogle Scholar
Nocquet, J.-M. & Calais, E. 2004. Geodetic measurements of crustal deformation in the Western Mediterranean and Europe. Pure Applied Geophysics 161, 661–81.CrossRefGoogle Scholar
Palano, M., González, P. J. & Fernández, J. 2015. The diffuse plate boundary of Nubia and Iberia in the Western Mediterranean: crustal deformation evidence for viscous coupling and fragmented lithosphere. Earth and Planetary Science Letters 430, 439–47.CrossRefGoogle Scholar
Pindell, J. L. & Kennan, L. 2001. Kinematic evolution of the Gulf of Mexico and Caribbean. In Petroleum Systems of Deep-Water Basins: Gulf Coast Section Society of Economic Paleontologists and Mineralogists Foundation (GCSSEPM), 21st Annual Bob F. Perkins Research Conference Transactions, Houston, Texas (eds Fillon, R., Rosen, N., Weimer, P., Lowrie, A., Pettingill, H., Phair, R., Roberts, H. & van Hoorn, B.), pp. 193220.Google Scholar
Piper, J. D. A. 1974. Proterozoic crustal distribution, mobile belts and apparent polar movements. Nature 251, 381–4.CrossRefGoogle Scholar
Ribeiro, A., Cabral, J., Baptista, R. & Matias, L. 1996. Stress pattern in Portugal mainland and the adjacent Atlantic region, West Iberia. Tectonophysics 15, 641–59.Google Scholar
Rogers, J. J. W. 1996. A history of continents in the past three billion years. Journal of Geology 104, 91107.CrossRefGoogle Scholar
Rolf, T., Coltice, N. & Tackley, P. 2012. Linking continental drift, plate tectonics and the thermal state of the Earth's mantle. Earth and Planetary Science Letters 351–352, 134–46.CrossRefGoogle Scholar
Rolf, T., Coltice, N. & Tackley, P. J. 2014. Statistical cyclicity of the supercontinent cycle. Geophysical Research Letters 41, 2351–8.CrossRefGoogle Scholar
Rosas, F. M., Duarte, J. C., Terrinha, P., Valadares, V. & Matias, L. 2009. Morphotectonic characterization of major bathymetric lineaments in NW Gulf of Cadiz (Africa-Iberia plate boundary): insights from analogue modelling experiments. Marine Geology 261, 3347.CrossRefGoogle Scholar
Rosenbaum, G., Lister, G. S. & Duboz, C. 2002. Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. Journal of the Virtual Explorer 8, 107–30.CrossRefGoogle Scholar
Rowley, D. B. 2008. Extrapolating oceanic age distributions: lessons from the Pacific region. Journal of Geology 116, 587–98.CrossRefGoogle Scholar
Royden, L. H. 1993. Evolution of retreating subduction boundaries formed during continental collision. Tectonics 12, 629–38.CrossRefGoogle Scholar
Schellart, W. P. 2008. Kinematics and flow patterns in deep mantle and upper mantle subduction models: influence of the mantle depth and slab to mantle viscosity ratio. Geochemistry, Geophysics, Geosystems 9, Q03014, doi: 10.1029/2007GC001656.CrossRefGoogle Scholar
Schellart, W. P., Freeman, J., Stegman, D. R., Moresi, L. & May, D. A. 2007. Evolution and diversity of subduction zones controlled by slab width. Nature 446, 308–11.CrossRefGoogle ScholarPubMed
Schellart, W. P., Lister, G. & Toy, V. 2006. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: tectonics controlled by subduction and slab rollback processes. Earth-Science Reviews 76, 191233.CrossRefGoogle Scholar
Schellart, W. P., Stegman, D., Farrington, R. & Moresi, L. 2011. Influence of lateral slab edge distance on plate velocity, trench velocity, and subduction partitioning. Journal of Geophysical Research 116, B10408, doi: 10.1029/2011JB008535.CrossRefGoogle Scholar
Scotese, C. R. 2004. A continental drift flipbook. Journal of Geology 112, 729–41.CrossRefGoogle Scholar
Scotese, C. R. 2007. PALEOMAP Project. http://www.scotese.com/future2.htm.Google Scholar
Silver, P. G. & Behn, M. D. 2008. Intermittent plate tectonics? Science 319, 85–8.CrossRefGoogle ScholarPubMed
Stein, C. & Stein, S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359, 123–8.CrossRefGoogle Scholar
Stephenson, R. A. & Cloetingh, S. A. P. L. 1991. Some examples and mechanical aspects of continental lithospheric folding. Tectonophysics 188, 2737.CrossRefGoogle Scholar
Stern, R. J. 2004. Subduction initiation: spontaneous and induced. Earth and Planetary Science Letters 226, 275–92.CrossRefGoogle Scholar
Stern, R. J., Reagan, M., Ishizuka, O., Ohara, Y. & Whattam, S. 2012. To understand subduction initiation, study forearc crust; to understand forearc crust, study ophiolites. Lithosphere 4, 469–83.CrossRefGoogle Scholar
Stich, D., Mancilla, F. de, L., Pondrelli, S. & Morales, J. 2007. Source analysis of the February 12th 2007, Mw 6.0 Horseshoe earthquake: implications for the 1755 Lisbon earthquake. Geophysical Research Letters 34, 12.CrossRefGoogle Scholar
Terrinha, P., Matias, L., Vicente, J., Duarte, J., Luís, J., Pinheiro, L., Lourenço, N., Diez, S., Rosas, F., Magalhães, V., Valadares, V., Zitellini, N., Mendes Víctor, L. & Team, MATESPRO. 2009. Morphotectonics and strain partitioning at the Iberia-Africa plate boundary from multibeam and seismic reflection data. Marine Geology 267, 156–74.CrossRefGoogle Scholar
Torsvik, T. H., Gaina, C. & Redfield, T. F. 2008. Antarctica and global paleogeography: from Rodinia, through Gondwanaland and Pangea, to the birth of the southern ocean and the opening of gateways. In Antarctica: A Keystone in a Changing World. Proceedings of the 10th International Symposium on Antarctic Earth Sciences (eds Cooper, A. K., Barrett, P. J., Stagg, H., Storey, B., Stump, E., Wise, W. & the 10th ISAES editorial team), pp. 125–40. Washington, DC: The National Academies Press.Google Scholar
Turcotte, D. L. & Schubert, G. 2002. Geodynamics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ueda, K., Gerya, T. & Sobolev, S. V. 2008. Subduction initiation by thermal–chemical plumes. Physics of the Earth and Planetary Interiors 171, 296312.CrossRefGoogle Scholar
Valentine, J. W. & Moores, E. M. 1970. Plate-tectonic regulation of faunal diversity and sea level: a model. Nature 228, 657–9.CrossRefGoogle ScholarPubMed
Veevers, J., Walter, M. & Scheibner, E. 1997. Neoproterozoic tectonics of Australia-Antarctica and Laurentia and the 560 Ma birth of the Pacific Ocean reflect the 400 my Pangean supercycle. Journal of Geology 105, 225–42.CrossRefGoogle Scholar
Vérard, C., Flores, K. & Stampfli, G. 2012. Geodynamic reconstructions of the South America – Antarctica plate system. Journal of Geodynamics 53, 4360.CrossRefGoogle Scholar
Waldron, J. W. F., Schofield, D. I., Murphy, J. B. & Thomas, C. W. 2014. How was the Iapetus Ocean infected with subduction? Geology 42, 1095–8.CrossRefGoogle Scholar
Wegener, A. 1912. Die Entstehung der Kontinente. Geologische Rundschau 3 (4), 276–92 (in German).CrossRefGoogle Scholar
Weil, A. B., Van der Voo, R., Mac Niocaill, C. & Meert, J. G. 1998. The Proterozoic supercontinent Rodinia: paleomagnetically derived reconstructions for 1100 to 800 Ma. Earth and Planetary Science Letters 154, 1324.CrossRefGoogle Scholar
Whattam, S. A. & Stern, R. J. 2011. The ‘subduction-initiation rule’: a key for linking ophiolites, intra-oceanic forearcs and subduction initiation. Contributions to Mineralogy and Petrology 162, 1031–45.CrossRefGoogle Scholar
Whattam, S. A. & Stern, R. J. 2015. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: the first documented example with implications for the onset of plate tectonics. Gondwana Research 27, 3863.CrossRefGoogle Scholar
Whitmarsh, R. B., Pinheiro, L. M., Miles, P. R., Recq, M. & Sibuet, J.-C. 1993. Thin crust at the western Iberia ocean–continent transition and ophiolites. Tectonics 12, 1230–9.CrossRefGoogle Scholar
Wilson, J. T. 1966. Did the Atlantic close and then reopen? Nature 211, 676.CrossRefGoogle Scholar
Worsley, T. R., Nance, R. D. & Moody, J. B. 1982. Plate tectonic episodicity: a deterministic model for periodic “Pangeas”. Eos, Transactions of the American Geophysical Union 65, 1104.Google Scholar
Worsley, T. R., Nance, R. D. & Moody, J. B. 1984. Global tectonics and eustasy for the past 2 billion years. Marine Geology 58, 373400.CrossRefGoogle Scholar
Yoshida. 2014. Effects of various lithospheric yield stresses and different mantle-heating modes on the breakup of the Pangea supercontinent. Geophysical Research Letters 41, 3060–7.CrossRefGoogle Scholar
Yoshida, M., Iwase, Y. & Honda, S. 1999. Generation of plumes under a localized high viscosity lid on 3-D spherical shell convection. Geophysical Research Letters 26, 947–50.CrossRefGoogle Scholar
Yoshida, M. & Santosh, M. 2011. Supercontinents, mantle dynamics and plate tectonics: a perspective based on conceptual vs. numerical models. Earth-Science Reviews 105, 124.CrossRefGoogle Scholar
Zhong, S., Zhang, N., Li, Z. X. & Roberts, J. H. 2007. Supercontinent cycles, true polar wander, and very long-wavelength mantle convection. Earth and Planetary Science Letters 261, 551–64.CrossRefGoogle Scholar
21
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The future of Earth's oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

The future of Earth's oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

The future of Earth's oceans: consequences of subduction initiation in the Atlantic and implications for supercontinent formation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *