Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-27T10:14:05.738Z Has data issue: false hasContentIssue false

Chicxulub impact spherules in the North Atlantic and Caribbean: age constraints and Cretaceous–Tertiary boundary hiatus

Published online by Cambridge University Press:  21 March 2013

GERTA KELLER*
Affiliation:
Department of Geosciences, Princeton University, Princeton NJ 08544, USA
HASSAN KHOZYEM
Affiliation:
Institut de Science de la Terre et de l'Environment (ISTE), Université de Lausanne, Lausanne, CH-1015Switzerland
THIERRY ADATTE
Affiliation:
Institut de Science de la Terre et de l'Environment (ISTE), Université de Lausanne, Lausanne, CH-1015Switzerland
NALLAMUTHU MALARKODI
Affiliation:
Department of Geology, Bangalore University, Bangalore 560 056, India
JORGE E. SPANGENBERG
Affiliation:
Mineralogy and Geochemistry Institute, University of Lausanne, Anthropole, Lausanne, CH-1015Switzerland
WOLFGANG STINNESBECK
Affiliation:
Institute für Geowissenschaften der Universität Heidelberg, 69120 Heidelberg, Germany
*
Author for correspondence: gkeller@princeton.edu

Abstract

The Chicxulub impact is commonly believed to have caused the Cretaceous–Tertiary boundary mass extinction and a thin impact spherule layer in the North Atlantic and Caribbean is frequently cited as proof. We evaluated this claim in the seven best North Atlantic and Caribbean Cretaceous–Tertiary boundary sequences based on high-resolution biostratigraphy, quantitative faunal analyses and stable isotopes. Results reveal a major Cretaceous–Tertiary boundary unconformity spanning most of Danian subzone P1a(1) and Maastrichtian zones CF1–CF2 (~400 ka) in the NW Atlantic Bass River core, ODP Sites 1049A, 1049C and 1050C. In the Caribbean ODP Sites 999B and 1001B the unconformity spans from the early Danian zone P1a(1) through to zones CF1–CF4 (~3 Ma). Only in the Demerara Rise ODP Site 1259B is erosion relatively minor and restricted to the earliest Danian zone P0 and most of subzone P1a(1) (~150 ka). In all sites examined, Chicxulub impact spherules are reworked into the early Danian subzone P1a(1) about 150–200 ka after the mass extinction. A similar pattern of erosion and redeposition of impact spherules in Danian sediments has previously been documented from Cuba, Haiti, Belize, Guatemala, south and central Mexico. This pattern can be explained by intensified Gulf stream circulation at times of climate cooling and sea level changes. The age of the Chicxulub impact cannot be determined from these reworked impact spherule layers, but can be evaluated based on the stratigraphically oldest spherule layer in NE Mexico and Texas, which indicates that this impact predates the Cretaceous–Tertiary boundary by about 130–150 ka.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, S. & Keller, G. 2003. Planktonic foraminiferal response to the latest Maastrichtian abrupt warm event: a case study from South Atlantic DSDP Site 525A. Marine Micropaleontology 48, 225–49.Google Scholar
Abramovich, S., Keller, G., Berner, Z., Cymbalista, M. & Rak, C. 2011. Maastrichtian planktic foraminiferal biostratigraphy and paleoenvironment of Brazos River, Falls County, Texas. In The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas (eds Keller, G. & Adatte, T.), pp. 123–56. Society for Sedimentary Geology (SEPM), Special Publication no. 100.Google Scholar
Abramovich, S., Yovel‐Corem, S., Almogi‐Labin, A. & Benjamini, C. 2010. Global climate change and planktic foraminiferal response in the Maastrichtian. Paleoceanography 25, PA2201.CrossRefGoogle Scholar
Adatte, T., Keller, G. & Baum, G. 2011. Age and origin of the Chicxulub impact and sandstone complex, Brazos River, Texas: evidence from lithostratigraphy, sedimentology and sequence stratigraphy. In The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas (eds Keller, G. & Adatte, T.), pp. 4380. Society for Sedimentary Geology (SEPM), Special Publication no. 100.Google Scholar
Adatte, T., Keller, G. & Stinnesbeck, W. 2002. Late Cretaceous to early Paleocene climate and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology 178, 165–98.Google Scholar
Adatte, T., Stinnesbeck, W. & Keller, G. 1996. Lithostratigraphic and mineralogical correlations of near-K–T boundary clastic sediments in northeastern Mexico: implications for origin and nature of deposition. In The Cretaceous-Tertiary Event and Other Catastrophes in Earth History (eds Ryder, G., Fastovsky, D. E. & Gartner, S.), pp. 211–26. Geological Society of America, Special Paper no. 307.Google Scholar
Alegret, L., Arenillas, I., Arz, J. A., Diaz, C., Grajales-Nishimura, J. M., Melendez, A., Molina, E., Rojas, R. & Soria, A. R. 2005. Cretaceous–Paleogene boundary deposits at Loma Capiro, central Cuba: evidence for the Chicxulub impact. Geology 33 (9), 721–24.Google Scholar
Alegret, L., Arenillas, I., Arz, J. A., Liesa, C., Melendez, A., Molina, E., Soria, A. R. & Thomas, E. 2002. The Cretaceous/Tertiary boundary: sedimentology and micropaleontology at the El Mulato section, NE Mexico. Terra Nova 14 (5), 330–6.Google Scholar
Arenillas, I., Arz, J. A., Grajales-Nishimura, J. M., Murillo-Muneton, G., Alvarez, W., Camargo-Zanguera, A., Molina, E. & Rosales-Dominguez, C. 2006. Chicxulub impact event is Cretaceous/Paleogene boundary in age: new micropaleontological evidence. Earth and Planetary Science Letters 249, 241–57.Google Scholar
Alegret, L., Molina, E. & Thomas, E. 2001. Benthic foraminifera at the Cretaceous/Tertiary boundary around the Gulf of Mexico. Geology 29 (10), 891–4.2.0.CO;2>CrossRefGoogle Scholar
Alegret, L. & Thomas, E. 2004. Benthic foraminifera and environmental turnover at the Cretaceous/Paleogene boundary at Blake Nose (ODP Hole 1049C, Northwestern Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 208, 5983.Google Scholar
Arz, J. A., Alegret, L. & Arenillas, I. 2004. Foraminiferal biostratigraphy and paleoenvironmental reconstruction at the Yaxcopoil-1 drill hole (Chicxulub crater, Yucatan Peninsula). Meteoritics and Planetary Science 39, 1099–112.Google Scholar
Arz, J. A., Arenillas, I., Soria, A. R., Alegret, L., Grajales-Nishimura, J. M., Liesa, C. L., Meléndez, A., Molina, E. & Rosales, M. C. 2001. Micropaleontology and sedimentology across the Cretaceous/Tertiary boundary at La Ceiba (Mexico): impact-generated sediment gravity flows. Journal of South American Earth Sciences 14, 505–19.CrossRefGoogle Scholar
Berggren, W. A., Kent, D. V., Swisher, C. C. & Aubry, M.-P. 1995. A revised Cenozoic geochronology and chronostratigraphy. In Geochronology, Time Scales and Global Stratigraphic Correlation (eds Berggren, W. A., Kent, D. V., Aubry, M. P., & Hardenbol, J.), pp. 129212. Society for Sedimentary Geology (SEPM), Special Publication no. 54.Google Scholar
Bourgeois, J., Hansen, T. A., Wiberg, P. & Kauffman, E. G. l988. A tsunami deposit at the Cretaceous–Tertiary boundary in Texas. Science 141, 567–70.Google Scholar
Bralower, T. J., Paull, C. K. & Leckie, R. M. 1998. The Cretaceous/Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows. Geology 26, 331–4.Google Scholar
Cande, S. & Kent, D. V. 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research 100, 6093–5.CrossRefGoogle Scholar
Colodner, D. C., Boyle, E. A., Edmond, J. M. & Thomson, J. 1992. Post-depositional mobility of platinum, iridium, and rhenium in marine sediments. Nature 358, 402–4.CrossRefGoogle Scholar
Cowie, J. W., Ziegler, W. & Remane, J. 1989. Stratigraphic Commission accelerates progress, 1984 to 1989. Episodes 12, 7983.CrossRefGoogle Scholar
Ekdale, A. A. & Stinnesbeck, W. l998. Ichnology of Cretaceous-Tertiary (K/T) boundary beds in northeastern Mexico. Palaios 13, 593602.Google Scholar
Gale, A. S. 2006. The Cretaceous–Palaeogene boundary on the Brazos River, Falls County, Texas: is there evidence for impact-induced tsunami sedimentation? Proceedings of the Geologists’ Association 117, 173–85.Google Scholar
Gertsch, B., Keller, G., Adatte, T. & Berner, Z. 2011. Platinum group element (PGE) geochemistry of Brazos Sections, Texas. In End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas (eds Keller, G. & Adatte, T.), pp. 228–49. Society for Sedimentary Geology (SEPM), Special Publication no. 100.Google Scholar
Gradstein, F., Ogg, J. & Smith, A. 2004. A Geologic Time Scale. Cambridge: Cambridge University Press, 598 pp.Google Scholar
Graup, G. & Spettel, B. 1989. Mineralogy and phase-chemistry of an Ir-enriched pre-K/T layer from the Lattengebirge, Bavarian Alps, and significance for the KTB problem. Earth and Planetary Science Letters 95, 271–90.Google Scholar
Huber, B. T., MacLeod, K. G. & Norris, R. D. 2002. Abrupt extinction and subsequent reworking of Cretaceous planktonic foraminifera across the K/T boundary: evidence from the subtropical North Atlantic, In Catastrophic Events and Mass Extinctions: Impacts and Beyond (eds Koeberl, C. & MacLeod, K.), pp. 227–89. Geological Society of America, Special Paper no. 356.Google Scholar
Huber, B. T., MacLeod, K. G. & Tur, N. A. 2008. Chronostratigraphic framework for upper Campanian–Maastrichtian sediments on the Blake Nose (Subtropical North Atlantic). Journal of Foraminiferal Research 38 (2), 162–82.Google Scholar
Keller, G. 2008. Impact stratigraphy: old principle – new reality. In The Sedimentary Record of Meteorite Impacts (eds Evans, K. R., Horton, J. W. & King, D. T.), pp. 147–78. Geological Society of America, Special Paper no. 437.Google Scholar
Keller, G. 2011 a. The Cretaceous-Tertiary mass extinction: theories and controversies, In The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas (eds Keller, G. & Adatte, T.), pp. 722. Society for Sedimentary Geology (SEPM), Special Publication no. 100.Google Scholar
Keller, G. 2011 b. Defining the Cretaceous–Tertiary Boundary: a practical guide and return to first principles. In The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas (eds Keller, G. & Adatte, T.), pp. 2342. Society for Sedimentary Geology (SEPM), Special Publication no. 100.Google Scholar
Keller, G., Abramovich, S., Adatte, T. & Berner, Z. 2011. Biostratigraphy, age of the Chicxulub impact and depositional environment of the Brazos River KT sequences. In The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas (eds Keller, G. & Adatte, T.), pp. 81122. Society for Sedimentary Geology (SEPM), Special Publication no. 100.Google Scholar
Keller, G. & Adatte, T. 2011. The End-Cretaceous Mass Extinction and the Chicxulub Impact in Texas. Society for Sedimentary Geology (SEPM), Special Publication no. 100, 315pp.Google Scholar
Keller, G., Adatte, T., Baum, G. & Berner, Z. 2008. Reply to ‘Chicxulub impact Predates K–T boundary: new evidence from Brazos, Texas’ comment by Schulte et al. Earth and Planetary Science Letters 269, 621–9.Google Scholar
Keller, G., Adatte, T., Berner, Z., Harting, M., Baum, G., Prauss, M., Tantawy, A. A. & Stueben, D. 2007. Chicxulub impact predates K–T Boundary: new evidence from Texas. Earth and Planetary Science Letters 255, 339–56.CrossRefGoogle Scholar
Keller, G., Adatte, T., Berner, Z., Pardo, A. & Lopez-Oliva, L. 2009. New evidence concerning the age and biotic effects of the Chicxulub impact in Mexico. Journal of the Geological Society, London 166, 393411.Google Scholar
Keller, G., Adatte, T., Bhowmick, P. K., Upadhyay, H., Dave, A., Reddy, A. N., Jaiprakash, B. C. 2012. Nature and timing of extinctions in Cretaceous–Tertiary planktic foraminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari Basin, India. Earth and Planetary Science Letters 341–344, 211–21.Google Scholar
Keller, G., Adatte, T., Stinnesbeck, W., Luciani, V., Karoui, N. & Zaghbib-Turki, D. 2002. Paleoecology of the Cretaceous–Tertiary mass extinction in planktic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 178, 257–98.Google Scholar
Keller, G., Adatte, T. & Stinnesbeck, W. 2004 a. More evidence that Chicxulub predates KT boundary. Meteoritics and Planetary Science 39 (6/7), 1127–44.Google Scholar
Keller, G., Adatte, T., Stinnesbeck, W., Rebolledo-Vieyra, M., Urrutia Fucugauchi, J., Kramar, U. & Stueben, D. 2004 b. Chicxulub crater predates K-T boundary mass extinction. Proceedings of the National Academy of Sciences (PNAS) 101 (11), 3721–992.CrossRefGoogle ScholarPubMed
Keller, G., Adatte, T., Stinnesbeck, W., Stueben, D. & Berner, Z. 2001. Age, chemo- and biostratigraphy of Haiti spherule-rich deposits: a multi-event K-T scenario. Canadian Journal of Earth Sciences 38, 197227.Google Scholar
Keller, G., Li, L. & MacLeod, N. 1995. The Cretaceous/Tertiary boundary stratotype section at El Kef, Tunisia: how catastrophic was the mass extinction? Palaeogeography, Palaeoclimatology, Palaeoecology 119, 221–54.CrossRefGoogle Scholar
Keller, G. & Lindinger, M. 1989. Stable isotope, TOC and CaCO3 record across the Cretaceous/Tertiary boundary at El Kef, Tunisia. Palaeogeography, Palaeoclimatology, Palaeoecology 73 (3/4), 243–65.Google Scholar
Keller, G., Lopez-Oliva, J. G., Stinnesbeck, W. & Adatte, T. 1997. Age, stratigraphy and deposition of near-K/T siliciclastic deposits in Mexico: relation to bolide impact? Geological Society of America Bulletin 109, 410–28.Google Scholar
Keller, G., Lyons, J. B., MacLeod, N. & Officer, C. B. 1993. Is there evidence for Cretaceous–Tertiary boundary impact deposits in the Caribbean and Gulf of Mexico? Geology 21, 776–80.2.3.CO;2>CrossRefGoogle Scholar
Keller, G., Stinnesbeck, W., Adatte, T., Holland, B., Stueben, D., Harting, M., De Leon, C. & De La Cruz, J. 2003 a. Spherule deposits in Cretaceous-Tertiary boundary sediments in Belize and Guatemala. Journal of the Geological Society, London 160, 113.CrossRefGoogle Scholar
Keller, G., Stinnesbeck, W., Adatte, T. & Stueben, D. 2003 b. Multiple impacts across the Cretaceous-Tertiary boundary. Earth-Science Reviews 62, 327–63.Google Scholar
Klaus, A., Norris, R. D., Kroon, D. & Smit, J. 2000. Impact-induced mass wasting at the K-T boundary: Blake Nose, western North Atlantic. Geology 28, 319–22.Google Scholar
Kramar, U., Stueben, D., Berner, Z., Stinnesbeck, W., Philipp, H. & Keller, G. 2001. Are Ir anomalies sufficient and unique indicators for cosmic events? Planetary and Space Science 49, 831–7.Google Scholar
Lee, C.-T., A., Wasserburg, G. J. & Kyte, F. T. 2003. Platinum-group elements (PGE) and rhenium in marine sediments across the Cretaceous–Tertiary boundary: constraints on Re-PGE transport in the marine environment. Geochimica et Cosmochimica Acta 67 (4), 655–70.Google Scholar
Li, L. & Keller, G. l998 a. Abrupt deep-sea warming at the end of the Cretaceous. Geology 26 (11), 995–8.Google Scholar
Li, L. & Keller, G. l998 b. Diversification and extinction in Campanian–Maastrichtian planktic foraminifera of northwestern Tunisia. Eclogae Geologica Helvetica 91, 75102.Google Scholar
Li, L. & Keller, G. l998 c. Maastrichtian climate, productivity and faunal turnovers in planktic foraminifera in South Atlantic DSDP Sites 525A and 21. Marine Micropaleontology 33, 5586.Google Scholar
Lopez-Oliva, J. G. & Keller, G. 1996. Age and stratigraphy of near-K/T boundary clastic deposits in NE Mexico. Geological Society of America, Special Paper 307, 227–42.Google Scholar
MacLeod, N. & Keller, G. 1991 a. Hiatus distribution and mass extinctions at the Cretaceous–Tertiary boundary. Geology 19, 497501.Google Scholar
MacLeod, N. & Keller, G. 1991 b. How complete are Cretaceous/Tertiary boundary sections? A chronostratigraphic estimate based on graphic correlation. Geological Society of America Bulletin 103, 1439–57.Google Scholar
MacLeod, K. G., Whitney, D. L., Huber, B. T. & Koeberl, C. 2007. Impact and extinction in remarkably complete Cretaceous–Tertiary boundary sections from Demerara Rise, tropical western North Atlantic. Geological Society of America Bulletin 119, 101–15.Google Scholar
Martinez-Ruiz, F., Ortega-Huertas, M., Palomo-Delgado, I. & Smit, J. 2001. K–T boundary spherules from Blake Nose (ODP Leg 171B) as a record of the Chicxulub ejecta deposits. In Western North Atlantic Paleogene and Cretaceous Paleoceanography (eds Kroon, D., Norris, R. D. & Klaus, A.), pp. 149–61 Geological Society of London, Special Publication no. 183.Google Scholar
Maurrasse, F. J.-M. R. & Sen, G. 1991. Impacts, tsunamis, and the Haitian Cretaceous-Tertiary boundary layer. Science 252, 1690–3.CrossRefGoogle ScholarPubMed
Miller, K. G., Sherrell, R. M., Browning, J. V., Field, M. P., Gallagher, W., Olsson, R. K., Sugarman, P. J., Tuorto, S. & Wahyudi, H. 2010. Relationship between mass extinction and iridium across the Cretaceous–Paleogene boundary in New Jersey. Geology 28, 867–70.Google Scholar
Miller, K. G., Sugarman, P. J., Browning, J. V., Olsson, R.K., Pekar, S. F., Reilly, T. H., Cramer, B. S., Aubry, M.-P., Lawrence, R. P., Curran, J., Stewart, M., Metzger, J. M., Uptegrove, J., Bukry, D., Burckle, L. H., Wright, J. D., Feigenson, M. D., Brenner, G. J. & Dalton, R. F. 1998. Bass River Site. In Proceedings of the Ocean Drilling Program, Initial Reports vol. 174AX, pp. 543. College Station, Texas. Doi: 10.2973/odp.proc.ir.174AX.101.1998 Google Scholar
Molina, E., Alegret, L., Arenillas, I., Arz, J. A., Gallala, N., Hardenbol, J., Von Salis, K., Steurbaut, E., Vandenberghe, N. & Zaghbib-Turki, D. 2006. The global boundary stratotype section and point for the base of the Danian Stage (Paleocene, Paleogene, ‘Tertiary’, Cenozoic) at El Kef, Tunisia – original definition and revision. Episodes 29, 263–73.Google Scholar
Norris, R. D., Firth, J., Blusztajn, J. & Ravizza, G. 2000. Mass failure of the North Atlantic margin triggered by the Cretaceous–Paleogene bolide impact. Geology 28, 1119–22.Google Scholar
Norris, R. D., Huber, B. T. & Self-Trail, J. 1999. Synchroneity of the KT oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic. Geology 27, 419–22.2.3.CO;2>CrossRefGoogle Scholar
Norris, R. D., Kroon, D., Klaus, A. et al. 1998. Site 1049. In Proceedings of the Ocean Drilling Program, Initial Reports, vol. 171B (eds Baez, L. A. & Kapitan-White, E.), pp. 4786. College Station, Texas.Google Scholar
Olsson, R. K., Miller, K. G., Browning, J. V., Habib, D. & Sugarmann, P. J. 1997. Ejecta layer at the Cretaceous-Tertiary boundary, Bass River, New Jersey (Ocean Drilling Program Leg 174AX). Geology 25, 759–62.Google Scholar
Prauss, M. L. 2009. The K/Pg boundary at Brazos River, Texas – an approach by marine palynology. Palaeogeography, Palaeoclimatology, Palaeoecology 283, 195215.CrossRefGoogle Scholar
Remane, J., Keller, G., Hardenbol, J. & Ben Haj Ali, M. l999. Report on the International Workshop on Cretaceous-Paleogene Transitions. Episodes 22 (1), 47–8.Google Scholar
Revesz, K. M., Landwehr, J. M. & Keybl, J. 2001. Measurement of δ13C and δ18O Isotope Ratios of CaCO3 Using a Thermoquest Finnigan GasBench II Delta Plus XL Continuous Flow Isotope Ratio Mass Spectrometer With Application to Devils Hole Core DH-11 Calcite. US Geological Survey Open-File-Report 01-257, 17 pp.Google Scholar
Schrag, D. P., DePaolo, D. J. & Richter, F. M. 1995. Reconstructing past sea surface temperatures from oxygen isotope measurements of bulk carbonate. Geochimica et Cosmochimica Acta 59, 2265–78.Google Scholar
Schulte, P., Alegret, L., Arenillas, I. et al. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–18.Google Scholar
Schulte, P., Deutsch, A., Salge, T., Berndt, J., Kontny, A., MacLeod, K., Neuser, R. D. & Krumm, S. 2009. A dual-layer Chicxulub ejecta sequence with shocked carbonates from the Cretaceous-Paleogene (K-Pg) boundary, Demerara Rise, western Atlantic. Geochimica et Cosmochimica Acta 73, 1180–204.Google Scholar
Schulte, P., Speijer, R. P., Brinkhuis, H., Kontny, A., Caleys, P., Galeotti, S. & Smit, J. 2008. Comment on the paper; ‘Chicxulub impact predates K-T boundary: new evidence from Brazos, Texas’ by Keller et al. (2007). Earth and Planetary Science Letters 269, 613–19.CrossRefGoogle Scholar
Schulte, P., Speijer, R. P., Mai, H. & Kontny, A. 2006. The Cretaceous-Paleogene (K-P) boundary at Brazos, Texas: sequence stratigraphy, depositional events and the Chicxulub impact. Sedimentary Geology 184, 77109.CrossRefGoogle Scholar
Schulte, P., Stinnesbeck, W., Stueben, D., Kramar, U., Berner, Z., Keller, G. & Adatte, T. 2003. Fe-rich and K-rich mafic spherules from slumped and channelized Chicxulub ejecta deposits in the northern La Sierrita area, NE Mexico. International Journal of Earth Sciences 92, 114–42.Google Scholar
Shipboard Scientific Party 2004. Site 1259. In Proceedings of the Ocean Drilling Program, Initial Reports, vol. 207 (eds Erbacher, J., Mosher, D. C., Malone, M. J. et al.), pp. 1110. College Station, Texas.Google Scholar
Sigurdsson, H., Leckie, R. M., Acton, G. D. et al. 1997. Caribbean volcanism, Cretaceous/Tertiary impact, and ocean-climate history: synthesis of leg 165. In Proceedings of the Ocean Drilling Program, Initial Reports vol. 165 (eds Miller, C. M. & Maddox, E. M.), pp. 377400. College Station, Texas.CrossRefGoogle Scholar
Smit, J. 1999. The global stratigraphy of the Cretaceous–Tertiary boundary impact ejecta. Annual Review of Earth and Planetary Sciences 27, 75113.Google Scholar
Smit, J., Montanari, A., Swinburne, N. H. M., Alvarez, W., Hildebrand, A. R., Margolis, S. V., Claeys, P., Lorie, W. & Asaro, F. 1992. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico. Geology 20, 99103.Google Scholar
Smit, J., Roep, T. B., Alvarez, W., Montanari, A., Claeys, P., Grajales-Nishimura, J. M. & Bermudez, J. l996. Coarse-grained clastic sandstone complex at the K/T boundary around the Gulf of Mexico: deposition by tsunami waves induced by the Chicxulub impact. Geological Society of America, Special Paper 307, 151–82.Google Scholar
Smit, J., van der Gaast, S. & Lustenhouwer, W. 2004. Is the transition to post-impact rock complete? Some remarks based on XRF sanning, electron-microprobe and thin section analyses of the Yaxcopoil-1 core in the Chicxulub crater. Meteoritics and Planetary Science 39 (6), 114.Google Scholar
Sohl, N. F., Martinez, R. E., Salmerón-Ureña, P. & Soto-Jaramillo, F. 1991. Upper Cretaceous. In Geology of North America: The Gulf of Mexico Basin (ed. Salvador, A.), pp. 205–44. Boulder: Geological Society of America.Google Scholar
Stinnesbeck, W., Barbarin, J. M., Keller, G., Lopez-Oliva, J. G., Pivnik, D. A., Lyons, J. B., Officer, C. B., Adatte, T., Graup, G., Rocchia, R. & Robin, E. 1993. Deposition of near K/T Boundary clastic sediments in NE Mexico: impact or turbidite deposits? Geology 21, 797800.Google Scholar
Stinnesbeck, W., Keller, G., Schulte, P., Stueben, D., Berner, Z., Kramar, U. & Lopez-Oliva, J. G. 2002. The Cretaceous-Tertiary (K/T) boundary transition at Coxquihui, State of Veracruz, Mexico: evidence for an early Danian impact event? Journal of South American Research 15, 497509.Google Scholar
Stueben, D., Kramar, U., Berner, Z., Eckhardt, J. D., Stinnesbeck, W., Keller, G., Adatte, T. & Heide, K. 2002. Two anomalies of platinum group elements above the Cretaceous–Tertiary boundary at Beloc, Haiti: geochemical context and consequences for the impact scenario. Geological Society of America, Special Paper 356, 163–88.Google Scholar
Stueben, D., Kramar, U., Harting, M., Stinnesbeck, W. & Keller, G. 2005. High-resolution geochemical record of Cretaceous-Tertiary boundary sections in Mexico: new constraints in the K/T and Chicxulub events. Geochimica et Cosmochimica Acta 69, 2559–79.Google Scholar
Tantawy, A. A. 2003. Calcareous nannofossil biostratigraphy and paleoecology of the Cretaceous–Tertiary transition in the western desert of Egypt. Marine Micropaleontology 47, 323–56.Google Scholar
Thibault, N. & Gardin, S. 2006. Maastrichtian calcareous nannofossil biostratigraphy and paleoecology in the Equatorial Atlantic (Demerara Rise, ODP Leg 207 Hole 1258A). Revue de Micropaléontology 49, 199214.Google Scholar
Watkins, D. K. & Self-Trail, J. M. 2005. Calcareous nannofossil evidence for the existence of the Gulf Stream during the late Maastrichtian. Paleoceanography 20, PA3006.Google Scholar
Zachos, J. C., Arthur, M. A. & Dean, W. E. 1989. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary. Nature 337, 61–4.Google Scholar