Skip to main content
×
Home
    • Aa
    • Aa

Chronology of early Cambrian biomineralization

  • ARTEM KOUCHINSKY (a1), STEFAN BENGTSON (a1), BRUCE RUNNEGAR (a2), CHRISTIAN SKOVSTED (a1), MICHAEL STEINER (a3) and MICHAEL VENDRASCO (a4)...
Abstract
Abstract

Data on the first appearances of major animal groups with mineralized skeletons on the Siberian Platform and worldwide are revised and summarized herein with references to an improved carbon isotope stratigraphy and radiometric dating in order to reconstruct the Cambrian radiation (popularly known as the ‘Cambrian explosion’) with a higher precision and provide a basis for the definition of Cambrian Stages 2 to 4. The Lophotrochozoa and, probably, Chaetognatha were first among protostomians to achieve biomineralization during the Terreneuvian Epoch, mainly the Fortunian Age. Fast evolutionary radiation within the Lophotrochozoa was followed by radiation of the sclerotized and biomineralized Ecdysozoa during Stage 3. The first mineralized skeletons of the Deuterostomia, represented by echinoderms, appeared in the middle of Cambrian Stage 3. The fossil record of sponges and cnidarians suggests that they acquired biomineralized skeletons in the late Neoproterozoic, but diversification of both definite sponges and cnidarians was in parallel to that of bilaterians. The distribution of calcium carbonate skeletal mineralogies from the upper Ediacaran to lower Cambrian reflects fluctuations in the global ocean chemistry and shows that the Cambrian radiation occurred mainly during a time of aragonite and high-magnesium calcite seas.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Chronology of early Cambrian biomineralization
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Chronology of early Cambrian biomineralization
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Chronology of early Cambrian biomineralization
      Available formats
      ×
Copyright
Corresponding author
Author for correspondence: artem.kouchinsky@nrm.se
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

C. W. Allison & S. M. Awramik 1989. Organic-walled microfossils from earliest Cambrian or latest Proterozoic Tindir Group rocks, northwest Canada. Precambrian Research 43, 253–94.

J. B. Antcliffe & M. D. Brasier 2008. Charnia at 50: developmental models for Ediacaran fronds. Palaeontology 51, 1126.

L. E. Babcock & S. Peng 2007. Cambrian chronostratigraphy: current state and future plans. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 62–6.

L. E. Babcock , S. C. Peng , G. Geyer & J. H. Shergold 2005. Changing perspectives on Cambrian chronostratigraphy and progress toward subdivision of the Cambrian System. Geoscience Journal 9, 101–6.

U. Balthasar 2008. Mummpikia gen. nov. and the origin of calcitic-shelled brachiopods. Palaeontology 51, 263–79.

S. Bengtson 1968. The problematic genus Mobergella from the Lower Cambrian of the Baltic area. Lethaia 1, 325–51.

S. Bengtson 1976. The structure of some Middle Cambrian conodonts, and the early evolution of conodont structure and function. Lethaia 9, 185206.

S. Bengtson 1986. A new Mongolian species of the Lower Cambrian genus Camenella and the problem of scleritome-based taxonomy of the Tommotiida. Paläontologische Zeitschrift 60 (1–2), 4555.

S. Bengtson & S. Conway Morris 1992. Early radiation of biomineralizing phyla. In Origin and Early Evolution of the Metazoa (eds J. H. Lipps & P. W. Signor ), pp. 447–81. New York: Plenum Press.

S. Bengtson , A. B. Fedorov , V. V. Missarzhevsky , A. Yu. Rozanov , E. A. Zhegallo & A. Yu. Zhuravlev 1987. Tumulduria incomperta and the case for Tommotian trilobites. Lethaia 20, 361–70.

J. Bergström & X. Hou 2001. Cambrian Onychophora or Xenusians. Zoologischer Anzeiger 240, 237–45.

J. P. Botting & N. J. Butterfield 2005. Reconstructing early sponge relationships by using the Burgess Shale fossil Eiffelia globosa, Walcott. Proceedings of the National Academy of Sciences 102, 1554–9.

S. Bowring , J. Grotzinger , D. Condon , J. Ramezani , M. Newall & P. Allen 2007. Geochronologic constraints of the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science 307, 1097–145.

M. D. Brasier , R. M. Corfield , L. A. Derry , A. Yu. Rozanov & A. Yu. Zhuravlev 1994 a. Multiple δ13C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia. Geology 22, 455–8.

M. D. Brasier , V. V. Khomentovsky & R. M. Corfield 1993. Stable isotopic calibration of the earliest skeletal fossil assemblages in eastern Siberia (Precambrian–Cambrian boundary). Terra Nova 5, 225–32.

M. D. Brasier & S. S. Sukhov 1998. The falling amplitude of carbon isotopic oscillations through the Lower to Middle Cambrian: northern Siberia data. Canadian Journal of Earth Sciences 35, 353–73.

G. E. Budd 2003. The Cambrian fossil record and the origin of the phyla. Integrative and Comparative Biology 43, 157–65.

G. E. Budd & S. Jensen 2000. A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews 75, 253–95.

N. J. Butterfield 2003. Exceptional fossil preservation and the Cambrian Explosion. Integrative and Comparative Biology 43, 166–77.

J.-Y. Chen & D.-Y. Huang 2002. A possible Lower Cambrian chaetognath (arrow worm). Science 298, 187.

J.-Y. Chen & D.-Y. Huang , Q.-Q. Peng , H.-M. Chi , X.-Q. Wang & M. Feng 2003. The first tunicate from the Early Cambrian of South China. Proceedings of the National Academy of Sciences 100, 8314–18.

W. Compston , Z. Zhang , J. A. Cooper , G. Ma & R. J. F. Jenkins 2008. Further SHRIMP geochronology on the early Cambrian of South China. American Journal of Science 308, 399420.

S. Conway Morris 1997. The cuticular structure of the 495-Myr-old type species of the fossil worm Palaeoscolex, P. piscatorum (?Priapulida). Zoological Journal of the Linnean Society 119, 6982.

S. Conway Morris 2006. Darwin's dilemma: the realities of the Cambrian “explosion”. Philosophical Transactions of the Royal Society of London B 361, 1069–83.

S. Conway Morris , D. McIlroy & A. W. Rushton 1998. Lower Cambrian halkieriids from Oxfordshire, U.K. Geological Magazine 135, 501–8.

S. Conway Morris , J. S. Peel , A. K. Higgins , N. J. Soper & N. C. Davis 1987. A Burgess shale-like fauna from the Lower Cambrian of North Greenland. Nature 326, 181–3.

J. A. D. Dickson 2002. Fossil echinoderms as monitor of the Mg/Ca ratio of Phanerozoic oceans. Science 298, 1222–4.

J. A. D. Dickson 2004. Echinoderm skeletal preservation: Calcite-aragonite seas and the Mg/Ca ratio of Phanerozoic oceans. Journal of Sedimentary Research 74, 355–65.

K. A. Dillard , M. C. Pope , M. Coniglio , S. T. Hasiotis & B. S. Lieberman 2007. Stable isotope geochemistry of the lower Cambrian Sekwi Formation, Northwest Territories, Canada: implications for ocean chemistry and secular curve generation. Palaeogeography, Palaeoclimatology, Palaeoecology 256, 174–94.

X.-P. Dong 2004. On the evolution and histology of some Cambrian protoconodonts, paraconodonts and primitive euconodonts. Science in China, Series D, Earth Sciences 47 (7), 577–84.

X.-P. Dong , P. C. J. Donoghue , J. A. Cunningham , J. Liu & H. Cheng 2005. The anatomy, affinity, and phylogenetic significance of Markuelia. Evolution & Development 7, 468–82.

P. C. J. Donoghue & I. J. Sansom 2002. Origin and early evolution of vertebrate skeletonization. Microscopy Research and Technique 59, 352–72.

P. C. J. Donoghue , I. J. Sansom & J. P. Downs 2006. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. Journal of Experimental Zoology, Part B: Molecular and Developmental Evolution 306B, 278–94.

J. Dzik 2010. Brachiopod identity of the alleged monoplacophoran ancestors of cephalopods. Malacologia 52, 97113.

O. Elicki & T. Wotte 2003. Cambroclaves from the Cambrian of Sardinia (Italy) and Germany: constraints for the architecture of western Gondwana and the palaeogeographical and palaeoecological potential of cambroclaves. Palaeogeography, Palaeoclimatology, Palaeoecology 195, 5571.

M. A. Fedonkin & B. M. Waggoner 1997. The Vendian fossil Kimberella: The oldest mollusk. Nature 388, 868–71.

K. M. Halanych 2004. The new view of animal phylogeny. Annual Review of Ecology, Evolution and Systematics 35, 229–56.

T. H. P. Harvey 2010. Carbonaceous preservation of Cambrian hexactinellid sponge spicules. Biology Letters 6, 834–7.

T. H. P. Harvey , X. Dong & P. C. J. Donoghue 2010. Are palaeoscolecids ancestral ecdysozoans? Evolution & Development 12, 177200.

J. S. Hollingsworth 2005. The earliest occurrence of trilobites and brachiopods in the Cambrian of Laurentia. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 153–65.

X.-G. Hou , X.-Y. Ma , J. Zhao & J. Bergström 2004. The lobopodian Paucipodia inermis from the Lower Cambrian Chengjiang fauna, Yunnan, China. Lethaia 37, 235–44.

X.-G. Hou , M. Williams , D. J. Siveter , D. J. Siveter , R. J. Aldridge & R. S. Sansom 2010. Soft-part anatomy of the Early Cambrian bivalved arthropods Kunyangella and Kunmingella: significance for the phylogenetic relationships of Bradoriida. Proceedings of the Royal Society B 277, 1835–41.

A. Yu. Ivantsov , A. Yu. Zhuravlev , A. V. Leguta , V. A. Krasilov , L. M. Melnikova & G. T. Ushatinskaya 2005. Palaeoecology of the Early Cambrian Sinsk biota from the Siberian Platform. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 6988.

J. B. Jago , W. Zang , X. Sun , G. A. Brock , J. R. Paterson & C. B. Skovsted 2006. A review of the Cambrian biostratigraphy of South Australia. Palaeoworld 15, 406–23.

P. A. Johnston , K. J. Johnston , C. J. Collom , W. G. Powell & R. J. Pollock 2009. Palaeontology and depositional environments of ancient brine seeps in the Middle Cambrian Burgess Shale at The Monarch, British Columbia, Canada. Palaeogeography, Palaeoclimatology, Palaeoecology 277, 86105.

A. J. Kaufman , A. H. Knoll & S. M. Awramik 1992. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case. Geology 20, 181–5.

A. Kemp 2002 a. Amino acid residues in conodont elements. Journal of Paleontology 76, 518–28.

T. N. Kheraskova , A. N. Didenko , V. A. Bush & Yu. A. Volozh 2003. The Vendian–early Paleozoic history of the continental margin of eastern Paleogondwana, Paleoasian ocean, and Central Asian foldbelt. Russian Journal of Earth Sciences 5, 165–84.

S. Kiel & P. R. Dando 2009. Chaetopterid tubes from vent and seep sites: implications for fossil record and evolutionary history of vent and seep annelids. Acta Palaeontologica Polonica 54, 443–8.

A. H. Knoll , J. P. Grotzinger , A. J. Kaufman & P. Kolosov 1995. Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, northeastern Siberia. Precambrian Research 73, 251–70.

A. Kouchinsky 2000. Skeletal microstructures of hyoliths from the Early Cambrian of Siberia. Alcheringa 24, 6581.

A. Kouchinsky , S. Bengtson , W. Feng , R. Kutygin & A. K. Val'kov 2009. The Lower Cambrian fossil Anabaritids: affinities, occurrences and systematics. Journal of Systematic Palaeontology 7, 241–98.

E. Landing 2004. Precambrian–Cambrian boundary interval deposition and the marginal platform of the Avalon microcontinent. Journal of Geodynamics 37, 411–35.

E. Landing , S. A. Bowring , K. L. Davidek , S. R. Westrop , G. Geyer & W. Heldmaier 1998. Duration of the Early Cambrian: U–Pb ages of volcanic ashes from Avalon and Gondwana. Canadian Journal of Earth Sciences 35, 329–38.

E. Landing , A. English & J. D. Keppie 2010. Cambrian origin of all skeletalized metazoan phyla-discovery of Earth's oldest bryozoans (Upper Cambrian, southern Mexico). Geology 38, 547–50.

E. Landing , P. M. Myrow , A. Benus & G. M. Narbonne 1989. The Placentian Series: appearance of the oldest skeletalized faunas in southeastern Newfoundland. Journal of Paleontology 63, 739–69.

E. Landing , G. S. Nowlan & T. P. Fletcher 1980. A microfauna associated with Early Cambrian faunas of the Callavia Zone, northern Antigonish Highlands, Nova Scotia. Canadian Journal of Earth Sciences 17, 400–18.

J. R. Laurie 1986. Phosphatic fauna of the Early Cambrian Todd River Dolomite, Amadeus Basin, central Australia. Alcheringa 10, 431–54.

C.-W. Li , J.-Y. Chen & T.-E. Hua 1998. Precambrian sponges with cellular structures. Science 279, 879–82.

G. Li , M. Steiner , M. Zhu , X. Zhu & B.-D. Erdtmann 2007. Early Cambrian fossil record of metazoans in South China: generic diversity and radiation patterns. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 226–46.

G. Li & S. Xiao 2004. Tannuolina and Micrina (Tannuolinidae) from the Lower Cambrian of eastern Yunnan, South China, and their scleritome reconstruction. Journal of Paleontology 78, 900–13.

B. S. Lieberman 2002. Phylogenetic analysis of some basal Early Cambrian trilobites, the biogeographic origins of the Eutrilobita, and the timing of the Cambrian radiation. Journal of Paleontology 76, 692708.

J. Liu , D. Shu , H. Han , Z. Zhang & X. Zhang 2007. Origin, diversification, and relationships of Cambrian lobopods. Gondwana Research 14 (1–2), 277–83.

G. D. Love , E. Grosjean , C. Stalvies , D. A. Fike , J. Grotzinger , A. S. Bradley , A. E. Kelly , M. Bhatia , W. Meredith , C. E. Snape , S. Bowring , D. Condon & R. E. Summons 2009. Fossil steroids record the appearance of Demospongiae during the Cryogenian Period. Nature 457, 718–22.

A. Maas & D. Waloszek 2005. Phosphatocopina – ostracode-like sister group of Eucrustacea. Hydrobiologia 538, 139–52.

A. C. Maloof , J. Ramezani , S. A. Bowring , D. A. Fike , S. M. Porter & M. Mazouad 2010 b. Constraints on early Cambrian carbon cycling from the duration of the Nemakit-Daldynian-Tommotian boundary δ13C shift, Morocco. Geology 38, 623–6.

A. C. Maloof , C. V. Rose , R. Beach , B. M. Samuels , C. C. Calmet , D. H. Erwin , G. R. Poirier , N. Yao & F. J. Simons 2010 c. Possible animal-body fossils in pre-Marinoan limestones from South Australia. Nature Geoscience 3, 653–9.

A. Mazumdar & D. M. Banerjee 1998. Siliceous sponge spicules in the Early Cambrian Chert-phosphate Member of the Lower Tal Formation, Krol belt, Lesser Himalaya. Geology 26, 899902.

M. A. McCaffrey , J. M. Moldowan , P. A. Lipton , R. E. Summons , K. E. Peters , A. Jeganathan & D. S. Watt 1994. Paleoenvironmental implications of novel C30 steranes in Precambrian to Cenozoic age petroleum and bitumen. Geochimica et Cosmochimica Acta 58, 529–32.

W. E. G. Müller , J. Li , H. C. Schröder , L. Qiao & X. Wang 2007. The unique skeleton of siliceous sponges (Porifera; Hexactinellida and Demospongiae) that evolved first from the Urmetazoa during the Proterozoic: a review. Biogeosciences 4, 219–32.

G. M. Narbonne 2005. The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annual Review of Earth and Planetary Sciences 33, 421–42.

G. M. Narbonne , A. J. Kaufman & A. H. Knoll 1994. Integrated chemostratigraphy and biostratigraphy of the Windermere Supergroup, northwestern Canada: implications for Neoproterozoic correlations and the early evolution of animals. Geological Society of America Bulletin 106, 1281–92.

M. L. Neal & J. T. Hannibal 2000. Paleoecologic and taxonomic implications of Sphenothallus and Sphenothallus-like specimens from Ohio and areas adjacent to Ohio. Journal of Paleontology 74, 369–80.

J. Peng , Y.-L. Zhao , Y. Wu , J.-L. Yuan & T.-S. Tai 2005. The Balang Fauna – a new early Cambrian Fauna from Kaili City, Guizhou Province. Chinese Science Bulletin 50, 1159–62.

S. M. Porter 2007. Seawater chemistry and early carbonate biomineralization. Science 316, 1302.

Y. Qian , G.-X. Li , M.-Y. Zhu , M. Steiner & B.-D. Erdtmann 2004. Early Cambrian protoconodonts and conodont-like fossils from China: taxonomic revisions and stratigraphic implications. Progress in Natural Science 14 (2), 173–80.

J. Reitner & G. Wörheide 2002. Non-Lithistid fossil Demospongiae – origins of their palaeobiodiversity and highlights in history of preservation. In Systema Porifera: A guide to the classification of sponges (eds J. N. A. Hooper & R. van Soest ), pp. 5268. New York: Kluwer.

R. Riding & A. Yu. Zhuravlev 1995. Structure and diversity of oldest sponge-microbe reefs: Lower Cambrian, Aldan River, Siberia. Geology 23, 649–52.

A. Yu. Rozanov & A. Yu. Zhuravlev 1992. The Lower Cambrian fossil record of the Soviet Union. In Origin and Early Evolution of the Metazoa (eds. J. H. Lipps & P. W. Signor ), pp. 205–82. New York: Plenum.

B. Runnegar 1980. Hyolitha: status of the phylum. Lethaia 13, 21–5.

B. Runnegar & J. Pojeta 1974. Molluscan phylogeny: the paleontological viewpoint. Science 186, 311–17.

B. Runnegar , J. Pojeta , N. J. Morris , J. D. Taylor , M. E. Taylor & G. McClung 1975. Biology of the Hyolitha. Lethaia 8, 181–91.

J. W. Salter 1864. On some new fossils from the Lingula flags of Wales. Quarterly Journal of the Geological Society of London 20, 233–41.

J. Samuelson , P. Van Roy & M. Vecoli 2001. Micropalaeontology of a Moroccan Ordovician deposit yielding soft-bodied organisms showing Ediacara-like preservation. Geobios 34, 365–73.

Y. Sawaki , M. Nishizawa , T. Suo , T. Komiya , T. Hirata , N. Takahata , Y. Sano , J. Han , Y. Kon & S. Maruyama 2008. Internal structures and U-Pb ages of zircons from a tuff layer in the Meishucunian formation, Yunnan Province, South China. Gondwana Research 14 (1–2), 148–58.

E. A. Serezhnikova 2007 Palaeophragmodictya spinosa sp. nov., a bilateral benthic organism from the Vendian of the southeastern White Sea region. Paleontological Journal 41 (4), 360–69.

D. G. Shu , H. L. Luo , S. Conway Morris , X. L. Zhang , S.-X. Hu , L. Chen , J. Han , M. Zhu , Y. Li & L.-Z. Chen 1999. Lower Cambrian vertebrates from south China. Nature 402, 42–6.

C. B. Skovsted , U. Balthasar , G. A. Brock & J. R. Paterson 2009 a. The tommotiid Camenella reticulosa from the lower Cambrian of South Australia, scleritome reconstructions and tommotiid phylogeny. Acta Palaeontologica Polonica 54, 525–40.

C. B. Skovsted , G. A. Brock , J. R. Paterson , L. E. Holmer & G. E. Budd 2008. The scleritome of Eccentrotheca from the Lower Cambrian of South Australia: lophophorate affinities and implications for tommotiid phylogeny. Geology 36, 171–4.

C. B. Skovsted , L. E. Holmer , C. M. Larsson , A. E. S. Högström , G. A. Brock , T. P. Topper , U. Balthasar , S. Petterson Stolk & J. P. Paterson 2009 b. The scleritome of Paterimitra: an Early Cambrian stem group brachiopod from South Australia. Proceedings of the Royal Society of London B 276, 1651–6.

C. B. Skovsted & J. S. Peel 2011. Hyolithellus in life position from the lower Cambrian of North Greenland. Journal of Paleontology 85, 3747.

M. P. Smith & I. J. Sansom 1995. The affinity of Anatolepis. Geobios 28 (Supplement 2), 61–3.

S. M. Stanley & L. A. Hardie 1998. Secular oscillations in the carbonate mineralogy of reefbuilding and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 144, 319.

M. Steiner , M. Zhu , G. Li , Y. Qian & B.-D. Erdtmann 2004 b. New Early Cambrian bilaterian embryos and larvae from China.Geology 32, 833–36.

M. Streng , J. O. R. Ebbestad & M. Moczydłowska 2008. A Walcottella-like bradoriid (Arthropoda) from the lower Cambrian of Sweden. GFF 130, 11–9.

M. Streng & C. B. Skovsted 2006. A new mobergellan (small shelly fossils) from the early Middle Cambrian of Morocco and its significance. Paläontologische Zeitschrift 80/3, 209–20.

H. Szaniawski & S. Bengtson 1993. Origin of euconodont elements. Journal of Paleontology 67, 640–54.

M. Tiwari 1999. Organic-walled microfossils from the Chert-Phosphate Member, Tal Formation, Precambrian–Cambrian boundary, India. Precambrian Research 97, 99113.

T. P. Topper , C. B. Skovsted , G. A. Brock & J. R. Paterson 2011. The oldest bivalved arthropods from the early Cambrian of East Gondwana: systematics, biostratigraphy and biogeography. Gondwana Research 19, 310–26.

H Van Iten ., Z. Vyhlasova , M.-Y. Zhu & Y. Qian 2005. Widespread occurrence of microscopic pores in conulariids. Journal of Paleontology 79, 400–7.

H. Van Iten , M.-Y. Zhu & D. Collins 2002. First report of Sphenothallus Hall, 1847 in the Middle Cambrian. Journal of Paleontology 76, 902–5.

H. Van Iten , M.-Y. Zhu & G. Li 2010. Redescription of Hexaconularia He and Yang, 1986 (Lower Cambrian, South China): implications for the affinities of conulariid-like small shelly fossils. Palaeontology 53, 191–9.

J. Vannier , M. Steiner , E. Renvoise , S.-X. Hu & J.-P. Casanova 2007. Early Cambrian origin of modern food webs: evidence from predator arrow worms. Proceedings of the Royal Society B 274, 627–33.

M. J. Vendrasco , G. Li , S. M. Porter & C. Z. Fernandez 2009. New data on the enigmatic Ocruranus-Eohalobia group of early Cambrian small skeletal fossils. Palaeontology 52, 1373–96.

B. Weber , M. Steiner & M. Zhu 2007. Precambrian–Cambrian trace fossils from the Yangtze Platform (South China) and the early evolution of bilaterian lifestyles. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 328–49.

M. Williams , D. J. Siveter , L. E. Popov & J. M. C. Vannier 2007 Biogeography and affinities of the bradoriid arthropods: cosmopolitan microbenthos of the Cambrian seas. Palaeogeography, Palaeoclimatology, Palaeoecology 248, 202–32.

R. A. Wood , J. P. Grotzinger & J. A. D. Dickson 2002. Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296, 2383–6.

E. L. Yochelson 1969. Stenothecoida, a proposed new class of Cambrian Mollusca. Lethaia 2, 4962.

G. C. Young 2009. An Ordovician vertebrate from western New South Wales, with comments on Cambro-Ordovician vertebrate distribution patterns. Alcheringa 33, 7989.

X. Yuan , S. Xiao , R. L. Parsley , C. Zhou , Z. Chen & J. Hu 2002. Towering sponges in an Early Cambrian Lagerstätte: disparity between nonbilaterian and bilaterian epifaunal tiers at the Neoproterozoic–Cambrian transition. Geology 30, 363–6.

H. Zhang , X.-P. Dong & A. Maas 2011. Hesslandona angustata (Phosphatocopida, Crustacea) from the Upper Cambrian of western Hunan, South China, with comments on phosphatocopid phylogeny. Neues Jahrbuch für Geologie und Paläontologie 259, 157–75.

Y. Zhang , X. Yuan & L. Yin 1998. Interpreting Late Precambrian microfossils. Science 282, 1783.

R.-X. Zhu , X.-H. Li , X. Hou , Y.-X. Pan , F. Wang , C.-L. Deng & H.-Y. He 2009. SIMS U-Pb zircon age of a tuff layer in the Meishucun section, Yunnan, southwest China: constraint on the age of the Precambrian-Cambrian boundary. Science in China, Series D-Earth Sciences 52 (9), 1385–92.

A. Yu. Zhuravlev & R. A. Wood 1996. Anoxia as the cause of the mid-Early Cambrian (Botomian) extinction event. Geology 24, 311–4.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
UNKNOWN
Supplementary Materials

Kouchinsky Figure S1
Figure S1. Compiled δ13 Ccarb record through the Cambrian of Siberia.

 Unknown (3.7 MB)
3.7 MB
EXCEL
Supplementary Appendices

Kouchinsky Appendix 2
Appendix 2. Earliest record of biomineralization in animal groups (based on Online Appendix 1)

 Excel (25 KB)
25 KB
WORD
Supplementary Appendices

Kouchinsky Appendix 1 & References
Appendix 1. Earliest occurrences of mineralized skeletal parts in metazoan groups

 Word (740 KB)
740 KB

Metrics

Altmetric attention score