Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T14:47:30.369Z Has data issue: false hasContentIssue false

Pliocene–Pleistocene sedimentary development of the syntectonic Polis graben, NW Cyprus: evidence from facies analysis, nannofossil biochronology and strontium isotope dating

Published online by Cambridge University Press:  28 May 2018

ELIZABETH M. BALMER*
Affiliation:
School of GeoSciences, Grant Institute, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
ALASTAIR H. F. ROBERTSON
Affiliation:
School of GeoSciences, Grant Institute, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
ISABELLA RAFFI
Affiliation:
Dipartimento di Ingegneria e Geotecnologie (InGeo), CeRSGeoUniversità degli Studi ‘G. d'Annunzio’ di Chieti-Pescara Campus Universitario, via dei Vestini 31 66013 Chieti Scalo, Italy
DICK KROON
Affiliation:
School of GeoSciences, Grant Institute, University of Edinburgh, James Hutton Road, Edinburgh EH9 3FE, UK
*
Author for correspondence: b7elizabeth@gmail.com

Abstract

The recently uplifted and exposed Pliocene and Pleistocene sedimentary infill of the neotectonic Polis graben provides an excellent opportunity to understand extensional basin development in a marine setting. Fieldwork, facies analysis and dating using nannofossils and strontium isotopes reveal how the sedimentary conditions evolved during infill of the Polis graben during Pliocene and Pleistocene time, and allow a composite succession for the depocentre to be determined for the first time. Six lithofacies are recognized in the northern Polis graben, allowing evolving palaeoenvironments to be inferred. By the end of Miocene time (Messinian) a major c. N–S-trending graben was established; extensional faulting continued during the Pliocene–Pleistocene until recent time. Post-Messinian salinity crisis deposition began with deposition of hemipelagic muds (c. 5.08–2.76 Ma), equivalent to the Nicosia Formation. This was followed by upwards incoming of repeated normal-graded bioclastic carbonates (couplets) (c. 2.76–1.6 Ma), which are interpreted as age-equivalents of the Athalassa Formation elsewhere in Cyprus. The upwards sudden facies change is explained by tectonically controlled shallowing which enabled neritic carbonate production on the basin margins. The appearance of basement-derived material (e.g. ophiolitic extrusive detritus) in the highest stratigraphic levels of the basin fill in the north (c. 1.7–1.6 Ma) reflects onset of rapid surface uplift focused on the Troodos ophiolitic massif. Overall, the syntectonic basin infill appears to document a two-stage, pulsed uplift related to early-stage collision of the African and Eurasian plates in the easternmost Mediterranean region.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J. & Rio, D. 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsletters on Stratigraphy 47 (2), 131–81.Google Scholar
Armijo, R., Meyer, B., Hubert, A. & Barka, A. 1999. Westward propagation of the North Anatolian fault into the northern Aegean: timing and kinematics. Geology 27 (3), 267–70.Google Scholar
Backman, J., Raffi, I., Rio, D., Fornaciari, E. & Pälike, H. 2012. Biozonation and biochronology of Miocene through Pleistocene calcareous nannofossils from low and intermediate latitudes. Newsletters on Stratigraphy 45 (3), 221–44.Google Scholar
Baroz, F. 1979. Étude géologique dans le Pentadaktylos et la Mesaoria (Chypre Septentrionale). Nancy, Université de Nancy. Published thesis.Google Scholar
Bear, L. M. 1960. The geology and mineral resources of the Akaki-Lythrodondha area. Cyprus, Geological Survey Department, Memoir 3, 122.Google Scholar
Bell, D. B., Jung, S. J. A. & Kroon, D. 2015. The Plio-Pleistocene development of Atlantic deep-water circulation and its influence on climate trends. Quaternary Science Reviews 123, 265–82.Google Scholar
Ben-Avraham, Z., Tibor, G., Limonov, A. F., Leybov, M. B., Ivanov, M. K., Tokarev, M. Y. & Woodside, J. M. 1995. Structure and tectonics of the eastern Cyprean Arc. Marine and Petroleum Geology 12 (3), 263–71.Google Scholar
Banner, F. T., Lord, A. R. & BouDagher-Fadel, M. K. 1999. The Terra Limestone Member (Miocene) of western Cyprus. Greifswalder Geowissenschaftliche Beitrage 6, 503–15.Google Scholar
BouDagher-Fadel, M. & Lord, A. 2006. Illusory stratigraphy decoded by Oligocene-Miocene autochthonous and allochthonous foraminifera in the Terra Member, Pakhna Formation (Cyprus). Stratigraphy 3 (3), 217–26.Google Scholar
Boulton, S. J., Robertson, A. H. F., Ellam, R. M., Şafak, Ü. & Ünlügenç, U. C. 2007. Strontium isotopic and micropalaeontological dating used to help redefine the stratigraphy of the neotectonic Hatay Graben, southern Turkey. Turkish Journal of Earth Sciences 16 (2), 141–79.Google Scholar
Boulton, S. J., Robertson, A. & Ünlügenç, U. 2006. Tectonic and sedimentary evolution of the Cenozoic Hatay Graben, Southern Turkey: a two-phase model for graben formation. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, A. H. F. & Mountrakis, D.), pp. 613–34. Geological Society, London, Special Publication no. 260.Google Scholar
Çiftçi, N. B. & Bozkurt, E. 2009. Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sedimentary Geology 216 (3), 4979.Google Scholar
Civile, D., Lodolo, E., Accettella, D., Geletti, R., Ben-Avraham, Z., Deponte, M., Facchin, L., Ramella, R. & Romeo, R. 2010. The Pantelleria graben (Sicily Channel, Central Mediterranean): an example of intraplate ‘passive’ rift. Tectonophysics 490 (3), 173–83.Google Scholar
Cohen, K. M. & Gibbard, P. L. 2010. Global chronostratigraphical correlation table for the last 2.7 million years v.2010. Cambridge, UK: Subcommission on Quaternary Stratigraphy, International Commission on Stratigraphy.Google Scholar
Constantinou, G. 1995. Geological Map of Cyprus. Nicosia: Geological Survey of Cyprus.Google Scholar
DePaolo, D. J. & Ingram, B. L. 1985. High-resolution stratigraphy with strontium isotopes. Science 227 (4689), 938–41.Google Scholar
Driscoll, N. W. & Diebold, J. B. 1999. Tectonic and stratigraphic development of the eastern Caribbean: new constraints from multichannel seismic data. Sedimentary Basins of the World 4, 591626.Google Scholar
Dunham, R. J. 1962. Classification of carbonate rocks according to depositional textures. American Association of Petroleum Geologists 1 (1): 108–21.Google Scholar
Einsele, G. 1992. Sedimentary Basins: Evolution, Facies, and Sedimentary Budget. Berlin, Heidelberg: Springer-Verlag.Google Scholar
Elion, P. 1983. Etude structural et sédimentologique du bassin Néogene de Pissouri (Chypre). Thèse 3e cycle, Université de Paris Sud, Orsay, France. Published thesis.Google Scholar
Escalona, A. & Mann, P. 2011. Tectonics, basin subsidence mechanisms, and paleogeography of the Caribbean-South American plate boundary zone. Marine and Petroleum Geology 28 (1), 839.Google Scholar
Follows, E. J., Robertson, A. H. F. & Scoffin, T. P. 1996. Tectonic controls on Miocene reefs and related carbonate facies in Cyprus. In Models for Carbonate Stratigraphy from Miocene Reef Complexes of the Mediterranean Regions (eds Franseen, E. K., Esteban, M., Ward, W. C. & Rouchy, J.-M.), pp. 295315. SEPM (Society for Sedimentary Geology), Concepts in Sedimentology and Paleontology no. 5.Google Scholar
Gass, I. G. 1960. The Geology and Mineral Resources of the Dhali area. Cyprus Geological Survey Department, Memoir 4, 116.Google Scholar
Hall, R. 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences 20, 353434.Google Scholar
Hardenberg, M. F. & Robertson, A. H. 2007. Sedimentology of the NW margin of the Arabian plate and the SW–NE trending Nahr El-Kabir half-graben in northern Syria during the latest Cretaceous and Cenozoic. Sedimentary Geology 201 (3), 231–66.Google Scholar
Harrison, R. W., Newell, W. L., Batıhanlı, H., Panayides, I., McGeehin, J. P., Mahan, S. A., Őzhűr, A., Tsiolakis, E. & Necdet, M. 2004. Tectonic framework and Late Cenozoic tectonic history of the northern part of Cyprus: implications for earthquake hazards and regional tectonics. Journal of Asian Earth Sciences 23 (2), 191210.Google Scholar
Harrison, R. W., Newell, W., Panayides, I., Stone, B., Tsiolakis, E., Necdet, M., Batihanli, H., Ozhur, A., Lord, A., Berksoy, O., Zomeni, Z. & Schindler, J. S. 2008. Bedrock Geologic Map of the Greater Lefkosia Area, Cyprus. US Geological Survey, Scientific Investigations Map 3046, scale 1:25 000, 36.Google Scholar
Harrison, R. W., Tsiolakis, E., Stone, B. D., Lord, A., McGeehin, J. P., Mahan, S. A. & Chirico, P. 2013. Late Pleistocene and Holocene uplift history of Cyprus: implications for active tectonics along the southern margin of the Anatolian microplate. In Geological Development of the Anatolia and the Easternmost Mediterranean Region (eds Robertson, A. H. F., Parlak, O. & Ünlügenç, U. C.), pp. 561–84. Geological Society, London, Special Publication no. 372.Google Scholar
Henson, F. R. S., Browne, R. V. & McGinty, J. 1949. A synopsis of the stratigraphy and geological history of Cyprus. Quarterly Journal of the Geological Society 105 (1–4), 141.Google Scholar
Howarth, R. J. & McArthur, J. M. 1997. Statistics for strontium isotope stratigraphy. A Robust LOWESS fit to the marine Sr-isotope curve for 0–206 Ma, with look-up table for the derivation of numerical age. Journal of Geology 105, 441–56.Google Scholar
Howell, A., Jackson, J., Copley, A., McKenzie, D. & Nissen, E. 2017. Subduction and vertical coastal motions in the eastern Mediterranean. Geophysical Journal International 211 (1), 593620.Google Scholar
Ingram, R. L. 1954. Terminology for the thickness of stratification and parting units in sedimentary rocks. Geological Society of America Bulletin 65 (9), 937–8.Google Scholar
Kempler, D. 1998. The Eratosthenes Seamount: the possible spearhead of incipient continental collision in the Eastern Mediterranean. A background study in view of Leg 160 results. In Proceedings of the Ocean Drilling Program (eds Robertson, A. H. F., Emeis, K., Richter, C. & Camerlengthi, A.). Texas A & M University, College Station, Texas, Scientific Results no. 160.Google Scholar
Kempler, D. & Ben-Avraham, Z. 1987. The tectonic evolution of the Cyprean Arc. Annales Tectonicae 1, 5871.Google Scholar
Kinnaird, T. & Robertson, A. H. F. 2013. Tectonic and sedimentary response to subduction and incipient continental collision in southern Cyprus, easternmost Mediterranean region. In Geological Development of the Anatolia and the Easternmost Mediterranean Region (eds Robertson, A. H. F., Parlak, O. & Ünlügenç, U. C.), pp. 584614. Geological Society, London, Special Publication no. 372.Google Scholar
Kinnaird, T. C., Robertson, A. H. & Morris, A. 2011. Timing of uplift of the Troodos Massif (Cyprus) constrained by sedimentary and magnetic polarity evidence. Journal of the Geological Society 168 (2), 457–70.Google Scholar
Lisiecki, L. E. & Raymo, M. E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic d18O records. Paleoceanography 20, 117.Google Scholar
Lord, A. R., Panayides, E. U. & Xenophontos, C. 2000. A biochronostratigraphical framework for the Late Cretaceous–Recent circum-Troodos sedimentary sequence, Cyprus. In: Proceedings of the Third International Conference on the Geology of the Eastern Mediterranean (eds Panayides, I., Xenophonotos, C. & Malpas, J.), pp. 289–97. Nicosia: Geological Survey Department, Ministry of Agriculture and Natural Resources and Environment.Google Scholar
Lykousis, V., Sakellariou, D., Moretti, I. & Kaberi, H. 2007. Late Quaternary basin evolution of the Gulf of Corinth: Sequence stratigraphy, sedimentation, fault–slip and subsidence rates. Tectonophysics 440 (1), 2951.Google Scholar
Main, C. E., Robertson, A. H. F. & Palamakumbura, R. N. 2016. Pleistocene geomorphological and sedimentary development of the Akaki River catchment (northeastern Troodos Massif) in relation to tectonic uplift versus climatic change. International Journal of Earth Sciences 105 (1), 463–85.Google Scholar
McArthur, J. M., Howarth, R. J. & Bailey, T. R. 2001. Strontium isotope stratigraphy: LOWESS Version 3. Best-fit line to the marine Sr-isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. Journal of Geology 109, 155–96.Google Scholar
McCallum, J. E. & Robertson, A. H. F. 1990. Pulsed uplift of the Troodos massif-evidence from the Plio-Pleistocene Mesaoria Basin. In Ophiolites: Crustal Analogues. Proceedings of the International Symposium ‘Troodos 1987’ (eds Moores, E. M., Malpas, J., Panayiotou, A. & Xenophontos, C.), pp. 217–30. Cyprus Geological Survey Department, Nicosia.Google Scholar
McCallum, J. E. & Robertson, A. H. F. 1995a. Late Pliocene-early Pleistocene Athalassa Formation, north central Cyprus: carbonate sand bodies in a shallow seaway between two emerging landmasses. Terra Nova 7 (2), 265–77.Google Scholar
McCallum, J. E. & Robertson, A. H. F. 1995b. Sedimentology of two fan-delta systems in the Pliocene– Pleistocene of the Mesaoria Basin, Cyprus. Sedimentary Geology 98 (1–4), 215–44.Google Scholar
McCay, G. A. & Robertson, A. H. F. 2013. Upper Miocene–Pleistocene deformation of the Girne (Kyrenia) Range and Dar Dere (Ovgos) lineaments, northern Cyprus: role in collision and tectonic escape in the easternmost Mediterranean region. In Geological Development of the Anatolia and the Easternmost Mediterranean Region (eds Robertson, A. H. F., Parlak, O. & Ünlügenç, U. C.), pp. 421–45. Geological Society, London, Special Publication no. 372.Google Scholar
McCay, G. A., Robertson, A. H. F., Kroon, D., Raffi, I., Ellam, R. M. & Necdet, M. 2013. Stratigraphy of Cretaceous to Lower Pliocene sediments in the northern part of Cyprus based on comparative 87Sr/86Sr isotopic, nannofossil and planktonic foraminiferal dating. Geological Magazine 150 (2), 333–59.Google Scholar
McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Kahle, H. & Kastens, K. 2000. Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth 105 (B3), 5695–719.Google Scholar
McNeill, L., Shillington, D. & Carter, G. 2017. Expedition 381 Scientific Prospectus: Corinth Active Rift Development. International Ocean Discovery Program. Published online October 2017, doi: 10.14379/iodp.sp.381.2017.Google Scholar
Ocakoğlu, N., Demirbağ, E. & Kuşçu, İ. 2004. Neotectonic structures in the area offshore of Alaçatı, Doğanbey and Kuşadası (western Turkey): evidence of strike-slip faulting in the Aegean extensional province. Tectonophysics 391 (1), 6783.Google Scholar
Orszag-Sperber, F., Rouchy, J. M. & Elion, P. 1989. The sedimentary expression of regional tectonic events during the Miocene-Pliocene transition in the southern Cyprus basins. Geological Magazine 126 (3), 291–9.Google Scholar
Palamakumbura, R. N. & Robertson, A. H. 2016. Pliocene–Pleistocene sedimentary-tectonic development of the Mesaoria (Mesarya) Basin in an incipient, diachronous collisional setting: facies evidence from the north of Cyprus. Geological Magazine, published online 21 December 2016. doi: 10.1017/S0016756816001072.Google Scholar
Palamakumbura, R. N., Robertson, A. H. F., Kinnaird, T. C., van Calsteren, P., Kroon, D. & Tait, J. A. 2016. Quantitative dating of Pleistocene deposits of the Kyrenia Range, northern Cyprus: implications for timing rates of uplift and driving mechanisms. Journal of the Geological Society 73 (6), 933–48.Google Scholar
Pantazis, T. 1979. Geological Map of Cyprus. Nicosia: Geological Survey of Cyprus.Google Scholar
Payne, A. S. & Robertson, A. H. F. 1995. Neogene supra-subduction zone extension in the Polis graben system, west Cyprus. Journal of the Geological Society 152 (4), 613–28.Google Scholar
Payne, A. S. & Robertson, A. H. F. 2000. Structural evolution and regional significance of the Polis graben system, western Cyprus. In Proceedings of the Third International Conference on the Geology of the Eastern Mediterranean. Nicosia: Cyprus Geological Survey Department, 4560.Google Scholar
Pickering, K. & Hiscott, R. 2015. Deep Marine Systems: Processes, Deposits, Environments, Tectonic and Sedimentation. Chichester, UK: John Wiley & Sons.Google Scholar
Poole, A. J. & Robertson, A. H. F. 1991. Quaternary uplift and sea-level change at an active plate boundary, Cyprus. Journal of the Geological Society 148 (5), 909–21.Google Scholar
Poole, A. J. & Robertson, A. H. F. 1998. Pleistocene fanglomerate deposition related to uplift of the Troodos Ophiolite, Cyprus. In: Proceedings of the Ocean Drilling Program (eds Robertson, A. H. F., Emeis, K-C., Richter, C. & Camerlenghi, ), pp. 545–66. Texas A & M University, College Station, Texas, Scientific Results no. 160.Google Scholar
Poole, A. J. & Robertson, A. H. F. 2000. Quaternary marine terraces and aeolianites in coastal south and west Cyprus: implications for regional uplift and sea-level change. In Proceedings of the Third International Conference on the Geology of the Eastern Mediterranean (ed. Panayiotou, A.), pp. 105–23. Geological Survey Department, Nicosia.Google Scholar
Poole, A. J., Shimmield, G. B. & Robertson, A. H. F. 1990. Late Quaternary uplift of the Troodos ophiolite, Cyprus: Uranium-series dating of Pleistocene coral. Geology 18 (9), 894–7.Google Scholar
Poulos, S. E., Collins, M. B., Pattiaratchi, C., Cramp, A., Gull, W., Tsimplis, M. & Papatheodorou, G. 1996. Oceanography and sedimentation in the semi-enclosed, deep-water Gulf of Corinth (Greece). Marine Geology 134 (3), 213–35.Google Scholar
Purvis, M. & Robertson, A. 2005a. Miocene sedimentary evolution of the NE–SW-trending Selendi and Gördes Basins, W Turkey: implications for extensional processes. Sedimentary Geology 174 (1), 3162.Google Scholar
Purvis, M. & Robertson, A. 2005b. Sedimentation of the Neogene–Recent Alaşehir (Gediz) continental graben system used to test alternative tectonic models for western (Aegean) Turkey. Sedimentary Geology 173 (1), 373408.Google Scholar
Reiche, S., Hübscher, C. & Ehrhardt, A. 2016. The impact of salt on the late Messinian to recent tectonostratigraphic evolution of the Cyprus subduction zone. Basin Research 28 (5), 569–97.Google Scholar
Robertson, A. H. F. 1977a. Tertiary uplift history of the Troodos massif, Cyprus. Geological Society of America Bulletin 88 (12), 1763–72.Google Scholar
Robertson, A. H. F. 1977b. The Kannaviou Formation, Cyprus: volcaniclastic sedimentation of a probable late Cretaceous volcanic arc. Journal of the Geological Society 134, 269–92.Google Scholar
Robertson, A. H. F. 1998. Tectonic significance of the Eratosthenes Seamount: a continental fragment in the process of collision with a subduction zone in the eastern Mediterranean (Ocean Drilling Program Leg 160). Tectonophysics 298 (1), 6382.Google Scholar
Robertson, A. H. F., Kidd, R. B., Ivanov, M. K., Limonov, A. F., Woodside, J. M., Galindo-Zaldivar, J. & Nieto, L. 1995. Eratosthenes Seamount: collisional processes in the easternmost Mediterranean in relation to the Plio-Quaternary uplift of southern Cyprus. Terra Nova 7 (2), 254–64.Google Scholar
Robertson, A. H. F. & Kinnaird, T. C. 2016. Structural development of the central Kyrenia Range (north Cyprus) in its regional setting in the eastern Mediterranean region. International Journal of Earth Sciences 105 (1), 417–37.Google Scholar
Robertson, A. H. F. & Woodcock, N. H. 1979. Mamonia Complex, southwest Cyprus: Evolution and emplacement of a Mesozoic continental margin. Geological Society of America Bulletin 90 (7), 651–65.Google Scholar
Robertson, A. H. F. & Woodcock, N. H. 1986. The role of the Kyrenia Range lineament, Cyprus, in the geological evolution of the Eastern Mediterranean area. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 317, 141–77.Google Scholar
Rohais, S. & Moretti, I. 2017. Structural and stratigraphic architecture of the Corinth Rift (Greece): an integrated onshore to offshore basin-scale synthesis. In Lithosphere Dynamics and Sedimentary Basins of the Arabian Plate and Surrounding Areas (eds Roure, F., Amin, A., Khomsi, S. & Garni, M. Al), pp. 89120. Cham: Springer International Publishing.Google Scholar
Rouchy, J. M., Orszag-Sperber, F., Blanc-Valleron, M. M., Pierre, C., Rivière, M., Combourieu-Nebout, N. & Panayides, I. 2001. Paleoenvironmental changes at the Messinian–Pliocene boundary in the eastern Mediterranean (southern Cyprus basins): significance of the Messinian Lago-Mare. Sedimentary Geology 145 (1), 93117.Google Scholar
Schirmer, W., Weber, J., Bachtadse, V., BouDagher-Fadel, M., Heller, F., Lehmkuhl, F., Panayides, I. & Schirmer, U. 2010. Fluvial stacking due to plate collision and uplift during the Early Pleistocene in Cyprus. Open Geosciences 2 (4), 514–23.Google Scholar
Şengör, A. M. C., Görür, N. & Şaroğlu, F. 1985. Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Strike-Slip Deformation, Basin Formation and Sedimentation (eds Biddle, K. D. & Christie-Blick, N.), pp. 227–64. Society of Economic Paleontologists and Mineralogists, Special Publication no. 17.Google Scholar
Swarbrick, R. E. & Naylor, M. A. 1980. The Kathikas melange, SW Cyprus: late Cretaceous submarine debris flows. Sedimentology 27 (1), 6378.Google Scholar
Swarbrick, R. E. & Robertson, A. H. F. 1980. Revised stratigraphy of the Mesozoic rocks of southern Cyprus. Geological Magazine 117 (6), 547–63.Google Scholar
Van de Weerd, A. A. & Armin, R. A. 1992. Origin and evolution of the Tertiary hydrocarbon-bearing basins in Kalimantan (Borneo), Indonesia. AAPG American Association of Petroleum Geologists Bulletin 76 (11), 1778–803.Google Scholar
Vidal, N., Klaeschen, D., Kopf, A., Docherty, C., Von Huene, R. & Krasheninnikov, V. A. 2000. Seismic images at the convergence zone from south of Cyprus to the Syrian coast, eastern Mediterranean. Tectonophysics 329 (1), 157–70.Google Scholar
Weber, J., Schirmer, W., Heller, F. & Bachtadse, V. 2011. Magnetostratigraphy of the Apalós Formation (early Pleistocene): evidence for pulsed uplift of Cyprus. Geochemistry, Geophysics, Geosystems 12 (1), doi: 10.1029/2010GC003193.Google Scholar
Yılmaz, Y., Genç, Ş., Gürer, F., Bozcu, M., Yilmaz, K., Karacik, Z., Altunkaynak, Ş. & Elmas, A. 2000. When did the Western Anatolian grabens begin to develop? In Tectonics and Magmatism in Turkey and the Surrounding Area (eds Bozkurt, E., Winchester, J. A. & Piper, J. D. A.), pp. 353–84. Geological Society, London, Special Publication no. 173.Google Scholar
Zitter, T. A., Woodside, J. M. & Mascle, J. 2003. The Anaximander Mountains: a clue to the tectonics of southwest Anatolia. Geological Journal 38 (3–4), 375–94.Google Scholar
Supplementary material: File

Balmer et al. supplementary material 1

Balmer et al. supplementary material

Download Balmer et al. supplementary material 1(File)
File 49.5 KB