Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T16:11:21.855Z Has data issue: false hasContentIssue false

Polymorphic organization in a planktonic graptoloid (Hemichordata: Pterobranchia) colony of Late Ordovician age

Published online by Cambridge University Press:  09 August 2012

JAN A. ZALASIEWICZ*
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK
ALEX PAGE
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK
R. BARRIE RICKARDS
Affiliation:
Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
MARK WILLIAMS
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK
PHILIP R. WILBY
Affiliation:
Department of Geology, University of Leicester, Leicester LE1 7RH, UK British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
MICHAEL P. A. HOWE
Affiliation:
British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
ANDREA M. SNELLING
Affiliation:
British Geological Survey, Keyworth, Nottingham NG12 5GG, UK
*
*Author for correspondence: jaz1@le.ac.uk

Abstract

Graptolites are common fossils in Early Palaeozoic strata, but little is known of their soft-part anatomy. However, we report a long-overlooked specimen of Dicranograptus aff. ramosus from Late Ordovician strata of southern Scotland that preserves a strongly polymorphic, recalcitrant, organic-walled network hitherto unseen in graptoloid graptolites. This network displays three morphologies: proximally, a strap-like pattern, likely of flattened tubes; these transform distally into isolated, hourglass-shaped structures; then, yet more distally, revert to a (simpler) strap-like pattern. The network most likely represents a stolon-like system, hitherto unknown in graptoloids, that connected individual zooids. Its alternative interpretation, as colonial xenobionts that infested a graptoloid colony and mimicked its architecture, is considered less likely on taphonomic and palaeobiological grounds. Such polymorphism is not known in non-graptolite pterobranchs, which are less diverse and morphologically more conservative: a division of labour between graptoloid zooids for such functions as feeding, breeding and rhabdosome construction may have been the key to their remarkable evolutionary success.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, D. E. B. 1987. The density of graptoloid skeletal tissue, and its implication for the volume and density of the soft tissue. Lethaia 20, 149–56.CrossRefGoogle Scholar
Bates, D. E. B. & Kirk, N. H. 1987. The role of extrathecal tissue in the construction and functioning of some Ordovician and Silurian retiolitid Graptolites. Bulletin of the Geological Society of Denmark 35, 85102.Google Scholar
Bates, D. E. B. & Kirk, N. H. 1991. The ultrastructure, mode of construction and functioning of Ordovician retiolitid graptolites from the Viola Limestone, Oklahoma. Modern Geology 15, 131286.Google Scholar
Bates, D. E. B. & Loydell, D. K. 2000. Parasitism on graptoloid graptolites, Palaeontology 43, 1143–51.Google Scholar
Bjerreskov, M. 1994 Pyrite diagenesis of graptolites from Bornholm. In Graptolite Research Today (eds Chen, X., Erdtmann, B. D. & Ni, Y.-N.), pp. 217–22. Nanjing: Nanjing University Press.Google Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Science 31, 275301.CrossRefGoogle Scholar
Briggs, D. E. G. & Kear, A. J. 1993. Decay and preservation of polychaetes: taphonomic thresholds in soft-bodied organisms. Palaeobiology 19, 107–35.CrossRefGoogle Scholar
Briggs, D. E. G., Kear, A. J., Baas, M., de Leeuw, A. J. & Rigby, S. 1995. Decay and composition of the hemichordate Rhabdopleura: implications for the taphonomy of graptolites. Lethaia 28, 1523.Google Scholar
Briggs, D. E. G. & Williams, H. S. 1981. The restoration of flattened fossils. Lethaia 15, 157–64.Google Scholar
Bulman, O. M. B. 1944. The Caradoc (Balclatchie) graptolites from limestones in Laggan Burn, Ayrshire. Part I. Monograph of the Palaeontographical Society, London 97, 142.Google Scholar
Bulman, O. M. B. 1970. Graptolithina with sections on Enteropneusta and Pterobranchia. In Treatise on Invertebrate Palaeontology, Part V (ed. Teichert, C.), pp. 1101. Boulder, Colorado: Geological Society of America; Lawrence, Kansas: University of Kansas Press.Google Scholar
Bulman, O. M. B. & Rickards, R. B. 1966. A revision of Wiman's dendroid and tuboid graptolites. Bulletin of the Geological Institution of the University of Uppsala 43, 173.Google Scholar
Butterfield, N. J. 1990. Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16, 272–86.CrossRefGoogle Scholar
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian explosion. Integrative and Comparative Biology 43, 166–77.Google Scholar
Carter, M. C., Gordon, D. P. & Gardner, J. P. A. 2010. Polymorphism and variation in modular animals: morphometric and density analyses of bryozoan avicularia. Marine Ecology Progress Series 399, 117–30.Google Scholar
Chapman, A. J., Durman, P. N. & Rickards, R. B. 1993. Rhabdopleuran hemichordates: new fossil forms and review. Proceedings of the Geologists’ Association 106, 293303.CrossRefGoogle Scholar
Crowther, P. R. & Rickards, R. B. 1977. Cortical bandages and the graptolite zooid. Geologica et Palaeontologica 11, 946.Google Scholar
Dilly, P. N. 1972. Some observations on living Rhabdopleura compacta [Hemichordata]. Journal of the Marine Biological Association 52, 443–8.Google Scholar
Dilly, P. N. 1975. The dormant buds of Rhabdopleura compacta (Hemichordata). Cell and Tissue Research 159, 387–97.Google Scholar
Dilly, P. N. 1993. Cephalodiscus graptolitoides sp. nov., probable extant graptolite. Journal of Zoology 229, 6978.Google Scholar
Donoghue, P. & Purnell, M. A. 2009. Distinguishing heat from light in debate over controversial fossils. Bioessays 31, 178–89.Google Scholar
Durman, P. N. & Sennikov, N. V. 1991. A new rhabdopleurid hemichordate from the Middle Cambrian of Siberia. Palaeontology 36, 283–96.Google Scholar
Elles, G. L. & Wood, E. M. R. 1901–1918 A Monograph of British Graptolites. London: Palaeontographical Society, i–clxxi, a–m, 1536.Google Scholar
Hou, X., Aldridge, R. J., Siveter, D. J., Siveter, D. J., Williams, M., Zalasiewicz, J. & Ma, X. 2011. An Early Cambrian hemichordate zooid. Current Biology 21, 15.Google Scholar
Hutt, J. E. 1974. A new group of Llandovery biform monograptids. In Graptolite Studies in Honour of O.M.B. Bulman (eds Rickards, R. B., Jackson, D. E. & Hughes, C. P.), pp. 189203. Special Papers in Palaeontology no. 13. London: Palaeontological Association.Google Scholar
Jackson, D. E. 1971. Development of Glyptograptus hudsoni sp. nov. from Southampton Island, North-West Territories, Canada. Palaeontology 14, 478–86.Google Scholar
Kozłowski, R. 1948. Les graptolithes et quelques nouveaux groupes d'animaux du Tremadoc de la Pologne. Acta Palaeontologia Polonica 3, 1235.Google Scholar
Kozłowski, R. 1962. Crustoidea – nouveau groupe de Graptolithes. Acta Palaeontologica Polonica 7, 352.Google Scholar
Legrand, Ph. 1978. Sur la presence des structures tubulaires a l'interieur des theques de Diplograptus fezzanensis A. Desio. Comptes Rendus de l'Academie des Sciences, Paris, Série D 286, 387–90.Google Scholar
Legrand, Ph. 1979. Premieres observations sur des structures tubulaires a l'interieur des theques de Diplograptus fezzanensis Desio. Essai d'interpretation. In Proceedings of the First International Conference “Advances in graptolite research”, 1977. Acta Palaeontologica Polonica 24, 107–20.Google Scholar
Legrand, Ph. 1986. New data on tubular structures located within diplograptid rhabdosomes and in the surrounding sediment. Hercynica 2, 11123.Google Scholar
Loydell, D. K., Orr, P. J. & Kearns, S. 2004. Preservation of soft tissues in Silurian graptolites from Latvia. Palaeontology 47, 503–13.Google Scholar
Maletz, J., Steiner, M. & Fatka, O. 2005. Middle Cambrian pterobranchs and the question: what is a graptolite? Lethaia 38, 7385.Google Scholar
McKinney, F. K. 2009. Bryozoan-hydroid symbiosis and a new ichnogenus, Caupokeras. Ichnos 16, 193201.Google Scholar
Melchin, M. J. & DeMont, M. E. 1995. Propulsion modes in the Graptolidea: a new model for graptolite locomotion. Paleobiology 21, 110–20.Google Scholar
Page, A., Gabbott, S. E., Wilby, P. R. & Zalasiewicz, J. A. 2008. Ubiquitous Burgess Shale-style “clay templates” in low-grade metamorphic mudrocks. Geology 36, 855–8.Google Scholar
Page, A., Wilby, P. R., Mellish, C. J. T., Williams, M. & Zalasiewicz, J. A. 2009 (for 2008). Dawsonia (Nicholson): linguliform brachiopods, crustacean tail-pieces and a problematicum rather than graptolite ovarian vesicles. Earth & Environmental Science Transactions of the Royal Society of Edinburgh 99, 251–66.Google Scholar
Page, A., Wilby, P. R., Williams, M., Vannier, J., Davies, J. R., Waters, R. & Zalasiewicz, J. A. 2010. Soft-part preservation in a bivalved arthropod from the Late Ordovician of Wales. Geological Magazine 147, 242–52.Google Scholar
Palmer, D. & Rickards, R. B. 1991. Graptolites: Writing in the Rocks. Woodbridge, Surrey: Boydell Press, 182 pp.Google Scholar
Rickards, R. B. 1975. The palaeoecology of the Graptolithina, an extinct class of the phylum Hemichordata. Biological Reviews 50, 397436.Google Scholar
Rickards, R. B., Partridge, P. L. & Banks, M. R. 1991. Psigraptus jacksoni Rickards and Stait – systematics, reconstruction, distribution and preservation. Alcheringa 15, 243–54.Google Scholar
Rigby, S. & Sudbury, M. 1995. Graptolite ontogeny and the size of the graptolite zooid. Geological Magazine 132, 427–33.Google Scholar
Rushton, A. W. A. 2001 (for 2000). The use of graptolites in the stratigraphy of the Southern Uplands: Peach's legacy. Transactions of the Royal Society of Edinburgh: Earth Sciences 91, 341–7.Google Scholar
Sato, A. 2008. Seasonal reproductive activity in the pterobranch hemichordate Rhabdopleura compacta. Journal of the Marine Biological Association 88, 1033–41.Google Scholar
Sherwin, L. & Rickards, B. 2000. Rogercooperia, a new genus of Ordovician glossograptid graptolite from southern Scotland and New South Wales, Australia. Scottish Journal of Geology 36, 159–64.Google Scholar
Stebbing, A. R. D. 1970. Aspects of the reproduction and life cycle of Rhabdopleura compacta (Hemichordata). Marine Biology 5, 205–12.Google Scholar
Sudbury, M. 1958. Triangulate monograptids from the Monograptus gregarius Zone (lower Llandovery) of the Rheidol Gorge (Cardiganshire). Philosophical Transactions of the Royal Society of London B281, 485555.Google Scholar
Sutton, M. D., Briggs, D. E. G., Siveter, D. J. & Siveter, D. J. 2001. A three-dimensionally preserved fossil polychaete worm from the Silurian of Herefordshire, England. Proceedings of the Royal Society, London B268, 2355–63.Google Scholar
Underwood, C. J. 1992. Graptolite preservation and deformation. Palaios 7, 178–86.Google Scholar
Urbanek, A. 1962. The significance of graptoblasts in the life cycle of crustoid graptolites. Acta Palaeontologica Polonica 28, 313–26.Google Scholar
Urbanek, A. & Dilly, P. N. 2000. The stolon system in Rhabdopleura compacta (Hemichordata) and its phylogenetic implications. Acta Palaeontologica Polonica 45, 201–26.Google Scholar
Zalasiewicz, J. A. & Howe, M. P. A. 2003. A case of profound astogenetic metamorphosis: the structure and affinities of Awarograptus nodifer (Törnquist, 1881). Scottish Journal of Geology 39, 45–9.Google Scholar
Zalasiewicz, J. A., Taylor, L., Rushton, A. W. A., Loydell, D. K., Rickards, R. B. & Williams, M. 2009. Graptolites in British stratigraphy. Geological Magazine 146, 785850.Google Scholar