Skip to main content
    • Aa
    • Aa

Timing of plutonism in the Gällivare area: implications for Proterozoic crustal development in the northern Norrbotten ore district, Sweden


Zircon ion probe (secondary-ion mass spectrometry or SIMS) data from a set of intrusive rocks emplaced in the vicinity of major ore bodies, as well as from large igneous intrusions in the Gällivare area, gave the following results: (1) the Dundret ultramafic–mafic layered complex (1883±5 Ma), the Aitik granite (1883±5 Ma), the Nautanen diorite (1870±12 Ma), the Vassaravaara ultramafic–mafic layered complex (1798±4 Ma), the Aitik dolerite (1813±9 Ma), the Bergmästergruvan and Sikträsk syenites (1795±4 Ma and 1801±3 Ma, respectively) and the Naalojärvi granite (1782±5 Ma). These data broadly fall within the ranges 1.89–1.87 Ga (early Svecofennian) and 1.80–1.78 Ga (late Svecofennian), but geochronologically allow further subdivision into pulses at 1885–1880, 1875–1870, 1800 and 1780 Ma. During these events, large layered ultramafic–mafic and felsic plutonic rocks were generated with distinct overlap in time suggesting coeval felsic–mafic magmatism. Results also indicate the presence of inherited c. 1.87 Ga zircon crystals in the plutonic rocks at 1.78 Ga, supporting reworking of the previous crust. These data indicate the importance of mantle-derived mafic underplating in the process of crustal magma generation in the region. The c. 1.88 Ga event that generated ultramafic–mafic layered complexes is tentatively suggested to have played an important role in the formation of the Aitik Cu–Au porphyry system. The later event at c. 1.80 Ga, generating voluminous mafic–felsic units, is suggested to be coupled to the regional iron-oxide-copper-gold (IOCG) overprint.

Corresponding author
Author for correspondence:
Hide All
T. Andersen , U. B. Andersson , S. Graham , G. Åberg & S. L. Simonsen 2009. Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Paleoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. Journal of Geological Society 166 (2), 233–48.

U. B. Andersson 1991. Granitoid episodes and mafic-felsic magma interaction in the Svecofennian of the Fennoscandian Shield, with main emphasis on the 1.8 Ga plutonics. Precambrian Research 51, 127–49.

U. B. Andersson , H. Rutanen , Å. Johansson , J. Mansfeld & A. Rimša 2007. Characterisation of the Palaeoproterozoic mantle beneath the Fennoscandian Shield: geochemistry and isotope geology (Nd, Sr) of ~1.8 Ga mafic plutonic rocks from the Transscandinavian Igneous Belt in southeast Sweden. International Geology Reviews 49, 587–25.

R. A. Cliff , D. Rickard & K. Blake 1990. Isotope systematics of the Kiruna magnetite ores, Sweden: part 1. Age of the ore. Economic Geology 85 (8), 1770–6.

F. Corfu , J. M. Hanchar , P. W. O. Hoskin & P. Kinny 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry 53, 469500.

E. J. Hanski , H. Huhma , P. Rastas & V. S. Kamenetsky 2001. The Palaeoproterozoic Komatiite-Picrite Association of Finnish Lapland. Journal of Petrology 42, 855–76.

M. W. Hitzman , N. Oreskes & M. T. Einaudi 1992. Geological characteristics and tectonic setting of proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Resarch 58, 241–87.

Å. Johansson , U. B. Andersson & U. Hålenius 2011. Ultrabasic-basic intrusions of Roslagen, east-central Sweden: mineralogy and geochemistry of early Svecofennian arc cumulates. Geological Journal 47, 557–93.

Å. Johansson & U. Hålenius 2013. Palaeoproterozoic mafic intrusions along the Avesta-Östhammar belt, east-central Sweden: mineralogy, geochemistry, and magmatic evolution. International Geology Review 55, 131–57.

R. Lahtinen , H. Huhma , Y. Lahaye , J. Kousa & J. Luukas 2015. Archean–Proterozoic collision boundary in central Fennoscandia: Revisited. Precambrian Research 261, 127–65.

R. Lahtinen , A. Korja & M. Nironen 2005. Paleoproterozoic tectonic evolution. Developments in Precambrian Geology 14, 481531.

O. Martinsson , K. Billström , C. Broman , P. Weihed & C. Wanhainen 2016. Metallogeny of the Northern Norrbotten Ore Province, northern Fennoscandian Shield with emphasis on IOCG and apatite-iron ore deposits. Ore Geology Reviews 78, 447–92.

C. Mellqvist , B. Öhlander , T. Skiöld & A. Wikström 1999. The Archaean–Proterozoic Palaeoboundary in the Luleå area, northern Sweden: field and isotope geochemical evidence for a sharp terrane boundary. Precambrian Research 96, 225–43.

J. Nyström 1982. Post-Svecokarelian andinotype evolution in central Sweden. Geologische Rundschau 71 (1), 141–57.

B. Öhlander , C. Mellqvist & T. Skiöld 1999. Sm–Nd isotope evidence of a collisional event in the Precambrian of northern Sweden. Precambrian Research 93, 105–17.

B. Öhlander & T. Skiöld 1994. Diversity of 1.8 Ga potassic granitoids along the edge of the Archaean craton in northern Scandinavia: a result of melt formation at various depths and from various sources. Lithos 33, 265–83.

B. Öhlander , T. Skiöld , S.-Å. Elming , S. Claesson & D. H. Nisca 1993. Delineation and character of the Archaean-Proterozoic boundary in northern Sweden. Precambrian Research 64, 6784.

R. L. Romer 1996. U-Pb systematics of stilbite-bearing low-temperature mineral assemblages from the Malmberget iron ore, northern Sweden. Geochimica et Cosmochimica Acta 60, 1951–61.

R. Romer , O. Martinsson & J.-A. Perdahl 1994. Geochronology of the Kiruna iron ores and hydrothermal alterations. Economic Geology 89, 1249–61.

R. Romer & J. Wright 1992. U-Pb dating of columbites: a geochronologic tool to date magmatism and ore deposits. Geochimica et Cosmochimica Acta 56, 2137–42.

T. Skiöld 1979. Zircon ages from an Archaean gneiss province in northern Sweden. Geologiska Föreningens i Stockholm Förhandlingar 101, 169–71.

T. Skiöld 1981. U-Pb isotope analyses from a Precambrian gneiss area in northern Sweden and their chronostratigraphic implications. Geologiska Föreningens i Stockholm Förhandlingar 103, 1725.

T. Skiöld 1986. On the age of the Kiruna Greenstones, northern Sweden. Precambrian Research 32, 3544.

T. Skiöld 1988. Implications of new U-Pb zircon chronology to early Proterozoic crustal accretion in northern Sweden. Precambrian Research 38, 147–64.

T. Skiöld , B. Öhlander & H. Markkula 1993. Chronology of Proterozoic orogenic processes at the Archaean continental margin in northern Sweden. Precambrian Research 64, 225–38.

T. Skiöld , B. Öhlander , R. D. Vocke & P. J. Hamilton 1988. Chemistry of Proterozoic orogenic processes at a continental margin in northern Sweden. Chemical Geology 69, 193207.

M. Smith , C. Storey , T. Jeffries & C. Ryan 2009. In situ U-Pb and trace element analysis of accessory minerals in the Kiruna District, Norrbotten, Sweden: new constraints on the timing and origin of mineralization. Journal of Petrology 50, 2063–94.

J. S. Stacey & J. D. Kramers 1975. Approximation of terrestrial lead isotope evolution by a 2-stage model. Earth and Planetary Science Letters 26, 207–21.

C. Storey , M. Smith & T. Jeffries 2007. In situ LA-ICP-MS U-Pb dating of metavolcanics of Norrbotten, Sweden: Records of extended geological histories in complex titanite grains. Chemical Geology 240, 163–81.

C. Wanhainen , K. Billström , O. Martinsson , H. Stein & R. Nordin 2005. 160 Ma of magmatic/hydrothermal and metamorphic activity in the Gällivare area: Re-Os dating of molybdenite and U-Pb dating of titanite from the Aitik Cu-Au-Ag deposit, northern Sweden. Mineralium Deposita 40 (4), 435–47.

C. Wanhainen , C. Broman , O. Martinsson & B. Magnor 2012. Modification of a Palaeoproterozoic porphyry-like system: integration of structural, geochemical, petrographic, and fluid inclusion data from the Aitik Cu-Au-Ag deposit, northern Sweden. Ore Geology Reviews 48, 306–31.

P. Weihed , N. Arndt , K. Billström , J. C. Duchesne , P. Eilu , O. Martinsson , H. Papunen & R. Lahtinen 2005. Precambrian geodynamics and ore formation: The Fennoscandian Shield. Ore Geology Reviews 27, 273322.

A. Westhues , J. M. Hanchar , M. J. Whitehouse & O. Martinsson 2016. New constraints on the timing of host-rock emplacement, hydrothermal alteration, and iron oxide-apatite mineralization in the Kiruna district, Norrbotten, Sweden. Economic Geology 111 (7), 1595–618.

M. J. Whitehouse & B. S. Kamber 2005. Assigning dates to thin gneissic veins in high-grade metamorphic terranes: a cautionary tale from Akilia, southwest Greenland. Journal of Petrology 46 (2), 291318.

M. J. Whitehouse , B. S. Kamber & S. Moorbath 1999. Age significance of U–Th–Pb zircon data from early Archaean rocks of west Greenland: a reassessment based on combined ion-microprobe and imaging studies. Chemical Geology 160 (3), 201–24.

M. Wiedenbeck , P. Alle , F. Corfu , W. L. Griffin , M. Meier , F. Oberli , A. von Quadt , J.C. Roddick & W. Spiegel 1995. Three natural zircon standards for the U-Th-Pb, Lu-Hf, trace element and REE analysis. Geostandards Newsletter 19, 123.

M. Wilson 1980. Granite types in Sweden. Geologiska Föreningens i Stockholm Förhandlingar 102 (2), 167–76.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Geological Magazine
  • ISSN: 0016-7568
  • EISSN: 1469-5081
  • URL: /core/journals/geological-magazine
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 139 *
Loading metrics...

* Views captured on Cambridge Core between 27th April 2017 - 19th October 2017. This data will be updated every 24 hours.